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ABSTRACT: In the biomedical area a critical factor is whether a classification model is
accurate enough in order to provide correct classification whether or not a patient has a
certain disease. Several techniques may be used in order to accommodate such situation.
In this context, Bayesian networks have emerged as a practical classification technology
with successful applications in many fields. At the same time, logistic regression is
a widely used statistical classification method and evidenced in the literature. In the
current paper we focus on investigating the preditive performance of a probabilistic
networks in its simple particular case, the so called naive Bayes network, compared to
the logistic regression. A systematic simulation study is performed and the procedures
are illustrated in some benchmark biomedical data sets.

KEYWORDS: Binary classification; simple probabilistic networks; näıve Bayes; logistic

regression.

1 Introduction

Currently different biomedical types of data, such as medical diagnosis,
sequences, protein structures and families, proteomics data, ontologies, gene
expression and other experimental data are often collected in research centers. In
this plot, classification is an essential task used to predict group membership for
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data instances. Therefore binary classification can be considered one particular
case on classification and has been successfully applied to wide range of medical
problems.

Thus many techniques can be used in the binary classification but methods
with high performance are highly required to minimize risks where diagnosis
mistakes can cost the life of the patients. In this context, Bayesian networks have
emerged as a practical classification technology with successful applications in many
fields and provides some advantages such as the ability to combine expert opinion
and experimental data (NIELSEN et al., 2009; HECKERMAN et al., 1995).

Otherwise, logistic regression is a widely used statistical method, as evidenced
in the literature (KING and ZENG, 2001). Alternatively other techniques are:
probit analysis, mathematical programming, expert systems, neural networks,
genetic algorithms and others (HAND and HENTLEY, 1997).

Generally, the best technique for all data sets does not exist, but we can
compare a set of methods using some statistical criteria. Therefore, the main
thrust of this paper is to investigate the ability of probabilistic networks in a simple
particular case of näıve Bayes network, and so called simple probabilistic networks,
compared to logistic regression. Then we compute a systematic confrontation
through simulation and real data analysis involving both methods. The basic
idea consists in applying the models to several replicated artificial datasets and
some real datasets. Hence study the behavior of the specific statistical performance
measures.

We only considered the naive Bayes network and logistic regression
classification strategy because they are consolidated casual classification methods.

This paper is organized as follows. In Section 2 the naive Bayes network and
logistic regression procedures like that ROC Curve and some performance measures
are presented. In Section 3 we present the simulation results with artificial data
and some analysis applied in benchmark biomedical real databases. We finish the
paper with some final comments in Section 4.

2 Methodology

In this section we expose shortly the procedures of näıve Bayes network and
logistic regression and how the ROC curve is applied in both methods. Also we
present some statistical performance measures.

2.1 Näıve Bayes network

The näıve Bayes procedure, described by Good (1965), Duda and Hart
(1973) and Flach and Lachiche (2004), is based in computing the posterior
probability distribution P (Y |X) where Y = {y1, y2, ..., yp} is the class variable
and X = {X1, X2, ..., Xk} is a set of attribute variables that explain the domain.
However, this classifier has strong independence assumption and this computation
is quite feasible. In other words P (Y = yi|X) ∝ P (Y = yi)

∏k
j=1 P (Xj |Y = yi).
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Thus predict to the most plausible category through arg maxY P (Y |X). Besides,
the näıve Bayes procedure can be interpreted as a simple probabilistic network. The
Figure 1 shows näıve Bayes network and a particular case of probabilistic network.

Figure 1 - In the left sub-image we present the traditional structure of näıve Bayes
network and in the right sub-image a probabilistic network with six
random variables is shown.

2.2 Logistic regression

In a similar way, we consider a set of attribute variables X = {X1, X2, ..., Xn}
and a class variable with binary categories Y = {y1, y2}. Thereby the logistic
regression method consists of appointing a linear relation between X and a logit
transformation of Y . If we take the y1 as the category in focus, this model can

be represented as log
[

π
1−π

]
= Xβ where π = P (Y = y1) and β the vector of

coefficients. Hence a possible way to represent this model is πi = expXiβ
1−expXiβ

where πi
is the probability of the i-th patient belonging to the category of interest. Through
specific considerations we can trace a cut-off point used in classification, in other
words, set a C point and classify a patient i as a diseased in category y1 on the
study if πi > C.

2.3 Some performance measures

A misclassification takes place when the modeling procedure fails to
correctly allocate a patient to its true category. Then the modeling procedure
misclassification rates can be easily calculated. Thus, to control the misclassification
we shall particularly consider the overall correct prediction rate also known as
accuracy rate (ACC), but also the sensitivity (SEN) and specificity (SPE). In this
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context we also consider the Matthews Correlation Coefficient (MCC) a balanced
measure which can be used even if the classes are of very different sizes, it returns
a value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0
an average random prediction and -1 an inverse prediction (NIELSEN; RUMI and
SALMERÓN, 2009). The performance measures are defined as,

ACC = TP+TN
TP+TN+FN+FP , SEN = TP

TP+FP , SPE = TN
TN+FN

and

MCC = TP ·TN−FP ·FN√
(TP+FP )·(TP+FN)·(TN+FP )·(TN+FN)

where TP is the number of true positive, test positive in actually positive cases,
FP is the number of false positive, test positive in actually negative cases, FN is
number of false negative, test negative in actually positive cases, TN is the number
of true negative, test negative in actually negative cases.

2.4 ROC Curve

The receiver operating characteristic (ROC) curve is an effective method of
evaluating the quality or performance of diagnostic tests, and is widely used in
several biomedical applications (PARK et al., 2004).

The ROC curve generalizes the notions of sensitivity (SEN) and specificity
(SPE) seeking maximum values for sensitivity and specificity measures. The lower
misclassification error is guaranteed by higher area of this curve, so the point closer
to the left corner can be considered like a cut-off point.

In this context, like often achieved with logistic regression, we can consider the
näıve Bayes network for binary classification and apply the ROC curve to define a
cut-off point to classify the posterior probability of a patient being assigned to the
adequate group.

3 Experimental results

In this section we expose the application results considering the logistic
regression and näıve Bayes network in some real and artificial datasets.

As a first set of experiments we consider for Blood Transufion, Breast Cancer,
Diabetes and Statlog(Heart) benchmark database.All of these are in the UCI
Machine Learning Repository (http://archive.ics.uci.edu/ml/). Table 1 gives a
numerical summary of the data sets and their perfomence measures. We can observe
a very similar performance.

As a final set of experiments we generated datasets according to a binary
random variable indicating presence or absence of a particular disease. Thus,
we achieved a comparative evaluate between both methods through a thorough
simulation where we consider 399 replications, this number was used by Hall (1986)
to construct confidence intervals for the boostrap technique.
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Table 1 - Perfomance measures obtained by biomedical real data analysis

Methods
DATA SIZE ATTRIBUTES TYPE RATE MEASURE NB LR

Blood Transufion 748 5 quantitative 24% ACC 0.69 0.68
SEN 0.68 0.76
SPE 0.69 0.65
MCC 0.32 0.35

Breast Cancer 286 10 qualitative 30% ACC 0.72 0.74
SEN 0.66 0.68
SPE 0.75 0.76
MCC 0.39 0.42

Diabetes 768 8 quantitative 35% ACC 0.75 0.77
SEN 0.73 0.74
SPE 0.76 0.78
MCC 0.48 0.51

Statlog(Heart) 270 13 quantitative 24% ACC 0.85 0.86
qualitative SEN 0.85 0.86

SPE 0.85 0.86
MCC 0.70 0.72

Then we consider a population with one class variable and ten attribute
variables, so fixed the samples size at 100, 300, 1000 and 10000 elements. The
attribute variables values in X were generated according to Breiman (1998),
such distribution of patients without a particular disease has a 10-dimensional
normal distribution with mean vector equals to (0, ..., 0) and covariance 4I10, the
distribution of patients with a particular disease has a 10-dimentional normal
distribution with mean vector equals to ( 1√

10
, ..., 1√

10
) and covariance I10, where

I10 is identity matrix of order 10. Also we consider four setups, 50%, 25%,10% and
1% rates of patient with a particular disease.

Overall, four datasets were generated through the rates, hereafter called Setup
1, Setup 2, Setup 3 and Setup 4, respectively. Hence we took four samples
with different sizes. For all resamples we fitted the usual logistic regression model
and näıve Bayes network. Table 2 shows the performance measures and the 95%
confidence intervals based on their resample distributions. The interval results show
that in both methods the performance measures are statistically equal, except for
MCC measure in the largest sample from Setup 1 where näıve Bayes (NB) appears
slightly better than logistic regression (LR), showing a significant improvement on
this criterion.

4 Final comments

In this paper we observed a straight approximation between näıve Bayes
network and logistic regression in biomedical data results. And statistically we
observed equal classification perfomance with slightly näıve Bayes superioty in
MCC measure in 50%-50% setup. In general we can say both methods have
close performances. Since the principle of parsimony suggests it is better to stick
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to the simplest model when compared to others with similar performances, in the
case of binary classification we can consider the naive Bayes model as a better option
than the logistic regression, being easier to implement.

ARA, A.; LOUZADA, F.; MILAN, L. A. Modelos de classificação binária para
dados biomédicos: redes probabiĺısticas simples e regressão loǵıstica. Rev. Bras.
Biom., Lavras, v.36, n.1, p.48-55, 2018.

RESUMO: Na área biomédica, um fator cŕıtico é verificar se um modelo de classificação

é preciso o suficiente para fornecer classificação correta se um paciente possui ou não

uma determinada doença. Várias técnicas podem ser utilizadas a fim de acomodar

tal situação. Neste contexto, as redes probabiĺısticas, também chamadas de redes

Bayesianas, emergiram como uma tecnologia de classificação prática, com aplicações

bem sucedidas em muitos campos. Paralelamente, a regressão loǵıstica é um método de

classificação estat́ıstica amplamente utilizado e evidenciado na literatura. No presente

trabalho nos concentramos em investigar a capacidade preditiva das redes probabiĺısticas

em seu caso mais simples, a chamada rede de Näıve Bayes, em comparação com a

regressão loǵıstica. Um estudo de simulação sistemática é realizada, bem como os

procedimentos são ilustrados em alguns conjuntos de dados biomédicos de referência.

PALAVRAS-CHAVE: Classificação binária; redes probabiĺısticas simples; näıve Bayes;

regressão loǵıstica.
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