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ABSTRACT: Data sets with complex structures is increasingly common in dental
research. As consequences, statistical methods to analyze and interpret these data must
be efficient and robust. Hierarchical structures is one of the most common kind of
complex structures, and a proper approach is required. The multilevel modeling used
to study hierarchical structures is a powerful tool which allows the collected data to be
analyzes in several levels. This study has as objective to make a literature review on
multilevel linear models and to illustrate a three level model through a matrix procedure,
without the use of specific software to estimate the parameters. With this model,
we analyzed the vertical gingival retraction when using the substances: Naphazoline
Chloridrate, Aluminium Chloride and without any substance. The intraclass correlation
coefficient on dental level within patients showed that the hierarchical structure was
important to accommodate the dependence within clusters.

KEYWORDS: Covariance matrix; Henderson’s equation; mixed models; linear multilevel
models; vertical gingival retraction.

1 Introduction

In 1976, Bennett published an important study about methods of teaching
with elementary school students from England. The results suggested that formal
methods of teaching were associated to a greater progress in basic students skills,
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causing considerable controversy. The experimental data were analyzed using
traditional multiple regression models which recognized the studied children as units
of analysis and ignored their grouping with classes and teachers.

The results were statistically significant, however, Aitkin et al. (1981) showed
that, considering the analysis with the children (units of analysis) grouped in
clusters, the significant differences vanished, and the children whom received such
formal teaching style, did not presented differences to those who did not received
such treatment. According to Goldstein, 2011, this reanalysis is the first important
example of a multilevel analysis in data form social sciences. In this case, any
children, for being in the same class, might be similar in their performances. More
information about the use of multilevel models regardind educational research can
be found in (BOCK, 2014).

Statistical methods and algorithms were developed and, in 1986, the basis of
multilevel analysis was established (LAIRD and WARE, 1982; MASON et al,1983,
GOLDSTEIN, 1986).

In dental clinical trials, the use of these methods is essential due to its
hierarchical structure (GILTHORPE, 2000; MDALA, 2012; MARTINS, 2014;
KOLAWOLE, 2016; CHRCANOVIC, 2016). Analysis assuming independence of
observations are inappropriate and, therefore, methodology which tends to group
the data in patient level results in loss of valuable information and may not reflect
the specific association. In such scenery, the estimates of standard errors are
underestimated and, therefore, type I errors are inflated by all statistical tests
using the supposition of independence (HANCOCK, 2010). The use of random
effects in multilevel modeling is a ordinary and suitable manner of modeling such
group structure.

2 Mixed models

Correlated data often appears in statistical analysis. Whether in the subjects
grouping, or in repeated measures in the same experimental unit throughout time
or space. Mixed models analysis provides a general and flexible approach in these
situations, because allow a great variety of correlations structures to be modeled.
A mixed model of data sets coming from repeated measures can be written as

yi = Xiβ + Zibi + εi (1)

where yi = (yi1, · · · , yini
)T with dimension (ni × 1) is the response profile of the

ith experimental unit, β is a vector with dimension (p× 1) of unknown fixed effects
parameters, Xi is a fixed effects design matrix with dimension (ni × t), known and
of full rank, bi is a vector with dimension (qi × 1) of random effects parameters Zi

is a random effects design matrix with dimension (ni × q) known and of full rank
and εi is a random errors vector with dimension (ni × 1).

We assume that bi ∼ Nq(0,G) and εi ∼ Nni(0,Ri), with G, with
dimension (q × q) and Ri with dimension (ni × ni) positive defined symmetrical
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matrices, and besides that, bi and εi are independent random variables. Hence,
yi ∼ N(Xiβ,ZiGZT

i + Ri).
The elements over the main diagonal of the matrix G represents each random

effects variances in bi, and the other diagonals represents the covariances between
two correspondent random effects. If the vector bi has q random effects associated
with the model, the matrix G is the following positive defined symmetrical matrix:

G = V ar(bi) =


V ar(b1i) cov(b1i, b2i) · · · cov(b1i, bqi)
cov(b1i, b2i) V ar(b2i) · · · cov(b2i, bqi)

...
...

. . .
...

cov(b1i, bqi) cov(b2i, bqi) · · · V ar(bqi)


The same way we have that the ni residuals in the vector εi are random

variables which follows a normal multivariate distribution with mean 0, and
covariance matrix positive defined and symmetric Ri, defined as

Ri = V ar(εi) =


V ar(ε1i) cov(ε1i, ε2i) · · · cov(ε1i, εnii)
cov(ε1i, ε2i) V ar(ε2i) · · · cov(ε2i, εnii)

...
...

. . .
...

cov(ε1i, εnii) cov(ε2i, εnii) · · · V ar(εnii)


The matrix Xi of order (ni × p) is the fixed effects specification matrix, that

is, represents the known values of the p covariables, and its defined as follows:

Xi =


X

(1)
1i X

(2)
1i · · · X

(p)
1i

X
(1)
2i X

(2)
2i · · · X

(p)
2i

...
...

. . .
...

X
(1)
nii X

(2)
nii · · · X

(p)
nii


The matrix Zi of order (ni×q) is the random effects specification matrix, that

is, represents the known values of the q covariables. The matrix Zi,

Zi =


Z

(1)
1i Z

(2)
1i · · · Z

(q)
1i

Z
(1)
2i Z

(2)
2i · · · Z

(q)
2i

...
...

. . .
...

Z
(1)
nii Z

(2)
nii · · · Z

(q)
nii

 ,
will be structured according to the layout of the data

According to West (2014), in many cases, predictive variables with effects that
vary randomly between individuals are represented in both matrices Xi and Zi.
For example, in a linear mixed model in which only the intercepts are random, the
matrix Zi will be simply composed of one column of 1s

702 Rev. Bras. Biom., Lavras, v.36, n.3, p.700-714, 2018 - doi: 10.28951/rbb.v36i3.285



To estimate β and predict b, we used Henderson’s equation (HENDERSON,
1950), which are given from the joint distribution of b and ε.

Let g be the number of elements in b and n the dimension of y, its joint
distribution is given by

f(b, ε) = 1
(2π)(n+g)/2

∣∣∣∣ G 0
0 R

∣∣∣∣− 1
2

·

exp
{
−1

2

[
b

y−Xβ − Zb

]′ [ G−1 0
0 R−1

] [
b

y−Xβ − Zb

]}
(2)

To maximize f(b.ε) regarding β and b, means to minimize the exponential
part of the equation(2)

Q =
[

b
y−Xβ − Zb

]′ [ G−1 0
0 R−1

] [
b

y−Xβ − Zb

]
= b′G−1b + (y−XβZb)′R−1(y−Xβ − Zb)

where is considered the independence of b and ε. This leads to Henderson’s mixed
model equations

∂Q

∂β
= 0⇔ X′R−1Xβ̂ + X′R−1Zb̂ = X′R−1Y

∂Q

∂b
= 0⇔ Z′R−1Xβ̂ + (Z′R−1Z + G−1)b̂ = Z′R−1Y

or in a matrix form[
X′R−1X X′R−1Z
Z′R−1X (Z′R−1Z + G−1)

] [
β̂

b̂

]
=
[

X′R−1Y
Z′R−1Y

]
. (3)

For the multilevel case, we can write yi ∼ N(Xiβ,Z1iG1ZT
1i +Z2iG2ZT

2i +Ri),
in which G1 and G2 represents the covariance matrices for the random effects bi’s
of the ith cluster, and the random effects bj|i’s of the jth unit of analysis nested
within the ith cluster, respectively, and Z1i and Z2i represents the specification
matrices of the random effects for the clusters and the unit of analysis respectively.

To solve the equation (3), the matrix Zi can be written as

Zi = [Z1i Z2i]

=




Z
(1)
1i Z

(2)
1i · · · Z

(q)
1i

Z
(1)
2i Z

(2)
2i · · · Z

(q)
2i

...
...

. . .
...

Z
(1)
nii Z

(2)
nii · · · Z

(q)
nii




Z
(1)
1j|i Z

(2)
1j|i · · · Z

(s)
1j|i

Z
(1)
2j|i Z

(2)
2j|i · · · Z

(s)
2j|i

...
...

. . .
...

Z
(1)
nij|i Z

(2)
nij|i · · · Z

(s)
nij|i



 ,

Rev. Bras. Biom., Lavras, v.36, n.3, p.700-714, 2018 - doi: 10.28951/rbb.v36i3.285 703



and the covariance matrix G of the random effects as

G =
[

G1 0
0 G2

]
.

3 Material and methods

This study were realized with the objective of evaluating the effects on
the vertical gingival retraction regarding the application of a treatment with
Naphazoline Chloridrate (C) against the usual treatment with Aluminium Chloride
(H), in comparison with a placebo (P). 24 patients were selected and they had the
same three teeth evaluated, teeth 13, 21 and 23 (Opinion 1.515.263 of the Ethics
Committee from the Maringá State University).

All the 24 patients received the three treatments, one in each tooth, that is,
each tooth in a patient received randomly a retractor wire with different chemical
substances or no substance. Of all teeth from all the patients were taken three
measures of the vertical gingival retraction.

The following diagram, represents a hierarchical structure with repeated
measures, which represents the data structure regarding the study in question.

PATIENT

TOOTH 13 TOOTH 21 TOOTH 23

Measure 1

Measure 2

Measure 3

Measure 1

Measure 2

Measure 3

Measure 1

Measure 2

Measure 3

CLUSTERS
(Level 3)

(Level 2)

Units of Analysis
(Level 1)

Initially the related isolation was performed with cotton rollers in the areas
corresponding to the teeth to be evaluated. After cleaning with dental floss and
cotton ball soaked in chlorhexidine at 2%, the teeth were rinsed an dried. A layer
of photopolymerizable gum guard Top damr was applied to the dental surface of
the elements 13, 21 and 23 at the cervical margin of the gingival sulcus to record
its initial position.
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After the entire excess of the gingival contour was removed with the aid of
a probe, the gel was polymerized. Then, using the double wire technique, the
retraction wires were positioned. Initially, the retractor wire (ultrapak) no 000 was
placed within the gingival sulcus of the vestibular face of each teeth. Then, the
(Ultrapakr) no1 retractor wire was placed randomly over the first wire. After the
placement of the wire 000, the retractor wire (Ultrapakr) no 1 was installed at the
first tooth soaked with Naphazoline Chloridrate (Legrandr - Group 1), over the
second tooth, soaked in Aluminium Chloride (Hemostopr - Group 2), and over the
third tooth, the wire was places without any substance (Placebo - Group 3).

The wires were soaked in their respective solutions for 7 minutes before being
applied to the teeth. After a 4 minute period, the retractor wires were removed from
within the gingival sulcus, the area was air dried and the molding was performed
using addition silicone (polyvinyl siloxane)(3D - Angelus, Londrina - Brazil)

After the addition silicone prey was taken, the dental tray was removed from
the mouth. After two hours of this molding, the cast was casted in a special type IV
plaster, and then cut into small blocks, from which were taken 72 images (one image
for each tooth with gingival retraction) by a camera coupled to a magnifying glass
(Olympus SZ-STS). The images were analyzed with the Image Pro-Plus (version
4.5) program to measure the distances between the gingival protector Top damr

and the gingival level. For example, the three measurements taken from one tooth
can be seen in Figure 1.

Figure 1 - The three measurements taken from one tooth casted in plaster.
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4 Linear multilevel model

To model the response variable vertical gingival retraction, we will assume the
treatments H, C and P as fixed effects, and the effects of the patients receiving
treatment, as random. With this approach we mean that if we would repeat the
same experiment with another patients, the expected values for the treatment would
be very similar to those obtained in this study, however, the individual effects of
the patients, may be different but with similar variance.

Considering the kth observation of the gingival retraction, k = 1, · · · ,K, with
K = 3, at the jth tooth, which received randomly one of the treatments, j =
1, · · · , J , and J = 3, of the ith patient, i = 1, · · · , I, with I = 24, a linear model
which seeks to relate the response variable yijk, with the treatments, taking into
account the variability that may exist between patients and the variability within
the teeth of each patient is given by

yijk = µ+ αij + bi + bj|i + εijk (4)
where bi ∼ N(0, σ2

b ), bj|i ∼ N(0, σ2
bj|i

) and εijk ∼ N(0, σ2), and are all mutually
independent random variables. µ are the overall mean, αij represents the fixed
effects regarding the treatment received by the jth tooth of the ith patient, bi are
the patients random effects, and bj|i are the random effects of the teeth within each
patient.

We will test the null hypothesis H0 : σ2
bj|i

= 0 against H1 : σ2
bj|i
6= 0, which is

equivalent of testing H0 : bj|i = 0 ∀ ij. From that, we have

yijk = µ+ αij + bi + εijk. (5)
We tested the null hypotheses by comparing (4) and (5) through an F-ratio

test, which led to reject H0, that is, there is strong evidence that, in many patients,
the teeth influence the gingival retraction, disregarding the treatment received.

Generally, in mixed models, the random effects variance is more interesting
than the random effects themselves. Therefore, we must estimate them (WOOD,
2006; FINCH, 2014).

For the dataset of vertical gingival retraction of this study, we estimated σ2

using σ2 = RSSε

(n− IJ) , where RSSε is the residual sum of squares of the model (4)

and n = IJK. In order to estimate σ2
bj|i

, we use the model which results from the
mean of the K values of the teeth level, that is,

ȳij. = µ+ αij + bi + bj|i + 1
K

K∑
k=1

εijk. (6)

By defining eij = bj|i + 1
K

K∑
k=1

εijk, we have that var(eij) = σ2
bj|i

+ σ2

K
, where

eij are independents and identically distributed random variables such that eij ∼
N(0, σ2

bj|i
+ σ2/K). This way, we can rewrite the simplified model as
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ȳij. = µ+ αj + bi + eij . (7)

which is useful to estimate the residual variance σ̂2
bj|i

=
RSSbj|i

IJ − I − J + 1 −
σ̂2

K
, such

that RSSbj|i is the residual sum of squares of (7).
By taken the mean of the response variable for each patient we have ȳi.. =

µ+ 1
J

J∑
j=1

αij + bi + 1
J

J∑
j=1

eij . If µ′i = µ+ 1
J

∑
j

αij and ei = bi + 1
J

∑
j

eij , then we

have

ȳi.. = µ′i + ei , (8)

such that ei ∼ N

(
0, σ2

b +
σ2

bj|i

J
+ σ2

JK

)
. Therefore, if RSSb is the residual sum of

squares of the model (8), an unbiased estimator of σ2
b is given by

σ̂2
b = RSSb

I − 1 −
σ̂2

bj|i

J
− σ̂2

JK
. (9)

The intraclass correlation coefficient (ICC) is a measure that describes the
similarity (or homogeneity) of observations within the same cluster (WEST, 2014;
FINCH, 2014). For each level of grouping, an ICC value can be defined as functions
of the variance components. This statistic takes values between zero and one,
indicating that, the closer to zero, smaller the chance of grouping of the data, and
the closer to one, greater is the chance of grouping. In other words, the greater the
correlation between individuals, the greater is the inadequacy of the usual regression
model. For a greater dependence between individuals of the same group, the greater
the need for a regression method that respects the data aggregation structure.

In order to verify the values acquired when using the matrix with Henderson’s
equation, we will use the statistical software R (R CORE TEAM, 2017) with the
package nlme (PINHEIRO et al, 2016), and its function lme(), which uses the
maximum likelihood (ML) and restricted maximum likelihood (REML) methods
for the estimation of parameters.

5 Results

The Table 1 presents part of the dataset of the vertical gingival retraction in
its hierarchical structure.
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Table 1 - Measures of the vertical gingival retraction by patients and teeth
Patients - Level 3 Teeth - Level 2 Units of Analysis - Level 1

Patients Teeth Measure 1 Measure 2 Measure 3
Patient 1 Tooth 13 0,25778 0,187796 0,183607
Patient 1 Tooth 21 0,154878 0,136879 0,161837
Patient 1 Tooth 23 0,216886 0,203544 0,18065
Patient 2 Tooth 13 0,232762 0,279884 0,141471
Patient 2 Tooth 21 0,427033 0,383964 0,520655
Patient 2 Tooth 23 0,440261 0,27015 0,299254
Patient 3 Tooth 13 0,304009 0,203544 0,185695
Patient 3 Tooth 21 0,223543 0,248008 0,224964
Patient 3 Tooth 23 0,222686 0,204482 0,196372

...
...

...
...

...
Patient 24 Tooth 23 0,239643 0,248008 0,203231

To solve the system (3), we must define the matrices X, Y, Z, R and G.
According to the disposition of the values in the dataset, we define

X =



1 1 0
1 0 1
1 0 0
1 0 1
1 0 0
1 1 0
1 0 0
1 1 0
1 0 1
...

...
...

1 0 1
1 0 0


216×3

,Y =



0.257780
0.154878
0.216886
0.232762
0.427033
0.440261
0.304009
0.223543

...
0.239643


216×1

The matrix Z must express both random effects used in the model, and
according to the dataset, it can be written as

Z =



P1 P2 P3 · · · P24 P1/D13 P1/D21 P1/D23 P2/D13 · · · P24/D23
1 0 0 · · · 0 1 0 0 0 · · · 0
1 0 0 · · · 0 1 0 0 0 · · · 0
1 0 0 · · · 0 1 0 0 0 · · · 0
0 1 0 · · · 0 0 0 0 1 · · · 0
0 1 0 · · · 0 0 0 0 1 · · · 0
0 1 0 · · · 0 0 0 0 1 · · · 0
...

...
...

. . .
...

...
...

...
... · · ·

...
0 0 0 · · · 1 0 0 0 0 · · · 1
0 0 0 · · · 1 0 0 0 0 · · · 1
0 0 0 · · · 1 0 0 0 0 · · · 1


216×96

In this study, we have σ = 0.03869, σb = 0.03924956 e σbj|i = 0.06282674.
Therefore, the matrix R is defined as
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R2 = σ2I = 0.0014972×


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


216×216

,

and the matrix G, which regards the patients and the teeth within the patients
random effects variances, which means

G1 = σ2
b I24×24 = [0.001540523]× I24×24

G2 = σ2
bjß

I72×72 = [0.003947203]× I72×72

can be written as

G =



 0.001540 0 · · · 0
0 0.001540 · · · 0
...

...
. . .

...
0 0 · · · 0.001540

 0

0

 0.003947 0 · · · 0
0 0.003947 · · · 0
...

...
. . .

...
0 0 · · · 0.003947




96×96

With these matrices implemented at the R software, the system (3) can be
solved. To emphasize the matrix process results from the R software, we present
part of its output:

[1] 0.191998 0.013502 0.054398 -0.014034 0.060240 0.004622
[7] -0.039918 -0.021236 -0.036653 0.053653 0.018053 0.003654
[13] 0.027100 -0.031677 -0.034517 -0.022178 0.002574 -0.013885
[19] -0.035041 0.001480 0.040138 -0.004210 -0.004791 -0.003178
[25] 0.004162 0.026968 0.018673 -0.035748 -0.020093 0.019882
[31] -0.042346 0.026561 0.170135 -0.002020 -0.016731 ...

where the first three values (inside the box) represent the fixed effects related to
the treatments, the next 24 represents the random effects regarding each patient,
and the last 72 (presenting only a few terms) represents the random effects of each
tooth nested within each patient.

In order to a statistical model be valid, we know that the randomness
and unpredictability are crucial components. Therefore, we need to analyze the
statistical errors of the model. For practical purposes, graphical displays of residues
can be used to detect discrepancies in the model for the mean response or the
presence of outliers observations which may require further investigations (FROST,
J., 2012)
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The Figure 2 presents three residual graphics of the chosen model. The first
two show standardized residuals and the observed values regarding fitted values.
With exception of a few values in the first one, these graphics do not indicate large
deviations from the proposed linear model. The final graph, a Q–Q plot (”Q”
stands for quantile), shows that the linearity of the points meet the assumption of
normality.

Fitted values
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Figure 2 - Residual graphs for the linear multilevel model proposed. The left panel
presents the stardardized residuals regarding the fitted values. The
middle panel shows the observed values and the fitted values. The right
panel is the Q-Q plot.

The estimated values, standard errors and the confidence intervals of 95% for
the fixed effects are presented in Table 2.

Table 2 - Estimate, Standard Error (S.E.), lower and upper limits with 95%
of confiance e p-value for the linear multilevel model

Parameter Estimate S.E. lower upper p-value
Intercept 0.19199793 0.01579398 0.16077995 0.22321591 <0.0001
Colírio 0.01350160 0.01924896 -0.02524455 0.05224774 0.4866
Hemostop 0.05439754 0.01924896 0.01565139 0.09314369 0.0070

Using the Placebo as the intercept (basis for comparison), we have that the
treatment with Naphazoline Chloridrate did not presented a significant p-value.
That is, the null hypothesis of them being equal was not rejected. However, the
treatment with Aluminium Chloride, got a significant p-value in comparison with
the placebo, indicating that there might be differences between the treatments.

Therefore, according to the data, there are evidences that the Naphazoline
Chloridrate (collyrium Legrand), when used as an agent of vertical gingival
retraction, is not capable of increasing the vertical retraction when compared with
the standard substance. However, the Hemostop treatment was significant, proving
its already conventional use.
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6 Discussion

The use of a multilevel model in order to adjust a hierarchical structure and
its more complex dataset is presented in this work. The necessity of this kind of
modeling can be measured with the ICC.

For the adopted model, the ICC for the patient level ICCb, is given by

ICCb = σ2
b

σ2
b + σ2

bj|i
+ σ2

= 0.2205497 .

In a similar way, the ICC for the teeth level, ICCbj|i , is given by

ICCbj|i =
σ2

b + σ2
bj|i

σ2
b + σ2

bj|i
+ σ2

= 0.7856527

With this value, relatively high for the teeth within patients level ICC, we can
say that the hierarchical structure adopted is important to model the dependency
among individuals.

Beside that, a mixed model with only one random effect on the patient level
was adjusted. This model was compared with the multilevel model through the
restricted likelihood ratio test. We verified the necessity of maintaining the random
effect regarding the teeth nested within the patient.

Throughout this study we verified that not using a model which contemplates
the dependency among individuals of the same group increases the amount of Type
I errors by all statistical tests which uses the supposition of independence.

With the results obtained, we verified the importance of multilevel models to
accommodate dataset with hierarchical structure, common in dentistry. Beside
that, the linear multilevel models are easy to manipulate, both algebraic and
computationally.
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RESUMO: Conjuntos de dados com estruturas complexas é cada vez mais comum em
pesquisas odontológicas. Como consequência, os métodos estatísticos usados para análise
e interpretação desses dados devem ser eficientes e robustos. Estruturas hierárquicas é
um dos tipos mais comuns de estruturas complexas, e uma abordagem apropriada é
necessária. A modelagem multinível utilizada para analisar estruturas hierárquicas é
uma ferramente poderosa a qual permite analisar os dados coletados em mais de um
nível. Este estudo tem como objetivo fazer uma breve revisão de literatura sobre modelos
lineares multinível e ilustrar um modelo de três níveis através de um procedimento
matricial, sem o uso de programas específicos para estimar os parâmetros. Com este
modelo, avaliou-se fastamento gengival vertical em função da aplicação das substâncias
Cloridrato de Nafazolina e Cloreto de Alumínio, e sem substância. O coeficiente de
correlação intraclasse no nível dos dentes dentro dos pacientes mostrou que a estrutura
hierárquica foi importante para acomodar a dependência dentro dos grupos.

PALAVRAS-CHAVE: Afastamento gengival vertical; modelo misto; modelo multinível.
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