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ABSTRACT: The present paper intends to revisit the distribution of the ratio of the

range to the sample standard deviation, known as the distribution of the internally

studentized range, in the normal case. This distribution has its importance recognized

in several areas, as quality control and inference, for testing the lack of homogeneity of

the data or kurtosis. An alternative distribution to the one presented by David et al.

(1954), based on the distribution of the maximum, is proposed. We exhibit a detailed

proof for the distribution of the internally studentized range in the normal case and

sample size 3. We also provide a new result: the distribution for the uniform case with

sample of size 3.
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1 Introduction

Consider two independent random samples, both of size n, of a normal
distribution. Let X(1) be the minimum, X(n) be the maximum, and W = X(n)

− X(1) be the range of the first sample and S the standard deviation of the second
sample. Then S and W are independent and the distribution of the quantity U =
W/S is very well known, usually called externally studentized range distribution,
and is very important in statistical inference. This situation occurs naturally in
experimental statistics. Note that the assumed two samples is only a resource

1Universidade Federal de Lavras - UFLA, Departamento de Estat́ıstica, CEP: 37.200-000, Lavras,
MG, Brazil. E-mail: danielff@des.ufla.br; devaniljaques@des.ufla.br

2Universidade Federal de Lavras - UFLA, Departamento de Ciências Exatas, CEP: 37.200-000,
Lavras, MG, Brazil. E-mail: lucas@dex.ufla.br

802 Rev. Bras. Biom., Lavras, v.36, n.4, p.802-826, 2018 - doi: 10.28951/rbb.v36i4.308



to guarantee the independence (RENCHER; SCHAALJE, 2008). The externally
studentized range distribution is also intensively applied in multiple comparisons
problems, as Tukey, Duncan and Student-Newman-Keuls’s tests (HINKELMANN;
KEMPTHORNE, 2007, p. 224). Case S and W are computed in the same sample,
they are not independent anymore and have a complicated joint distribution. The
exact distribution of internally studentized range U = W/S is not known (DAVID;
HARTLEY; PEARSON, 1954; CURRIE, 1980) and will be the focus of this work.

David, Hartley e Pearson (1954) argue that approximations of this distribution
has been efficient both in the exploration of homogeneity of data or departure from
normality and in testing for kurtosis. They had studied it using two approximations.
Firstly, they calculated the first four moments of U = W/S and approached the
true distribution by the Pearson’s curves. Secondly, they related the distribution
of U = W/S to the Student t distribution and used the late to approach upper
tail quantiles of the distribution of U = W/S. After the work of David, Hartley e
Pearson (1954) very few was done to improve the knowledge of this distribution.
Thomson (1955) exhibit, without proof, the distribution in the normal case and
samples of size 3. Currie (1980), considering parent normal distribution and using
geometric arguments, obtained the distribution for sample of size 4.

This work may be outlined as: in section 2 we review the theory of the
internally studentized range distribution and exhibit detailed proofs for all the
important and original theoretical mathematical statistics used in David, Hartley e
Pearson (1954)’s article. We also provide a new approximation to the distribution
of the internally studentized range for normal random samples in subsection 2.2
and a Monte Carlo approach in subsection 2.3. In section 3 our approximations
are compared with that presented by David, Hartley e Pearson (1954). In section 4
we exhibit a detailed proof for the distribution of the internally studentized range,
originally obtained by Thomson (1955), in the normal case with sample of size 3. We
also provide a new result: the distribution, in the uniform case, for samples of size
3. Finally, in section 5, we show an application of the internally studentized range.
We present a simple new normality test and the evaluation of its performance.

2 The theory of the internally studentized range distribution

Let X1, X2, . . ., Xn be a random sample of size n from a normal distribution
with mean µ and variance σ2. Let X(1), X(2), . . ., X(n) be the order statistics
for this sample, where X(j) is the jth smallest order statistics. Thus X(1) is the
minimum and X(n) is the maximum order statistics. The sample range is defined
as the difference

W = X(n) − X(1).

Consider the sample mean
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X̄ =
1

n

n∑
i=1

Xi

and the sample variance

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2.

We want do study the statistics: the studentized range U = (X(n) − X(1))/S =
W/S, (X(n)−X̄)/S and (X(1)−X̄)/S. These statistics are important, for example,
in analysing outliers.

Proposition 2.1. (X(n) − X̄)/S, (X(1) − X̄)/S and W/S = (X(n) −X(1))/S are
independent of S, where all those statistics are functions of a random sample X1,
X2, . . ., Xn from a normal distribution with mean µ and variance σ2.

Proof. We present here a proof based on Basu’s theorem which states that any
ancillary statistic is independent of any minimal sufficient statistic.

The quantity (Xi−X̄)/S, i = 1, 2, . . ., n, is invariant for linear transformation
αX + β, α > 0, and therefore it is an ancillary statistic. As (X(i) − X̄)/S depends
only on (Xi− X̄)/S, it is also ancillary. By Basu’s theorem (CASELLA; BERGER,
2002, p. 287) it is independent of the minimal sufficient statistics X̄ and S. An
alternative proof is presented in Appendix A.

As the moments of W and S are known, this result allows an easy calculation
of the moments of U = W/S:

E [W r] =E

[
W r

Sr
Sr
]

= E

[(
W

S

)r
Sr
]

= E

[(
W

S

)r]
E [Sr]

→E
[(

W

S

)r]
=
E [W r]

E [Sr]
.

Let’s consider now

U ′ = (Xj −Xk)/S,

where (j, k) is any pair of elements in {1, 2, . . ., n} with j 6= k. The random
variable U ′ is related to Student’s t distribution. To see this we need a very trick
identity in sum of squares.

Proposition 2.2. (n − 1)s2 = 1
2 (xj − xk)2 +

n∑
i 6=j,k

(xi − x̄′)2 + 2(n−2)
n (x̄′ − x̄′′)2,

where

x̄′ =

n∑
i 6=j,k

xi

n− 2
and x̄′′ =

xj + xk
2

.
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Proof. An algebraic proof, that the authors could not find anywhere, is left to the
appendix A. We present here a new geometric proof. We suppose, without loss of
generality, j = 1 and k = 2.

In Figure 1 and in what follows we use the notations: x = (x1, x2, · · · , xn)
>

,

x̄ = (x̄, x̄, · · · , x̄)
>

, η = (x̄′′, x̄′′, x3, · · · , xn)
>

and ξ = (x̄′′, x̄′′, x̄′, · · · , x̄′)>

x̄

x
x− x̄

(A)

x− x̄

η − x̄

x− η

(B)

x− x̄

η − x̄

ξ − x̄

x− η

η − ξ

(C)

Figure 1 - Geometric construction of the partition of x− x̄.

Figure 1(A) just shows the vectors x, x̄ and the diference x− x̄. Figure 1(B)
shows the decomposition of x− x̄ as the sum of the vectors x−η and η− x̄. Figure
1(C) decomposes the vector η − x̄ as the sum of η − ξ and ξ − x̄, what allows us
to write x − x̄ = (x − η) + (η − ξ) + (ξ − x̄). Now, if we prove the orthogonality
of x− η and η − x̄ we may write ‖x− x̄‖2 = ‖x− η‖2 + ‖η − x̄‖2; if we prove the
orthogonality of η−ξ and ξ− x̄, we may also write ‖η− x̄‖2 = ‖η−ξ‖2 +‖ξ− x̄‖2.
Putting all together we may, finally, write:

‖x− x̄‖2 = ‖x− η‖2 + ‖η − ξ‖2 + ‖ξ − x̄‖2

To show the orthogonality of x− η and η − x̄ we observe that

(x− η) � (η − x̄) =
[
(x1, x2, · · · , xn)

> − (x̄′′, x̄′′, x3, · · · , xn)
>
]
�[

(x̄′′, x̄′′, x3, · · · , xn)
> − (x̄, x̄, · · · , x̄)

>
]

= (x̄′′ − x̄)

(
x1 + x2 − 2

x1 + x2
2

)
= 0

and, so, the vectors x − η and η − x̄ are orthogonal. In a similar way one shows
that (η − ξ) � (ξ − x̄) = 0 and, so, η − ξ and ξ − x̄ are also orthogonal. Therefore

(x1, x2, · · · , xn)
> − (x̄, x̄, · · · , x̄)

>
= (x1, x2, · · · , xn)

>−

− (x̄′′, x̄′′, x3, · · · , xn)
>

+ (x̄′′, x̄′′, x3, · · · , xn)
>−

− (x̄′′, x̄′′, x̄′, · · · , x̄′)> + (x̄′′, x̄′′, x̄′, · · · , x̄′)> − (x̄, x̄, · · · , x̄)
>
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and∥∥∥(x1, x2, · · · , xn)> − (x̄, x̄, · · · , x̄)>
∥∥∥2 =

∥∥∥(x1, x2, · · · , xn)> −
(
x̄′′, x̄′′, x3, · · · , xn

)>∥∥∥2 +∥∥∥(x̄′′, x̄′′, x3, · · · , xn

)> −
(
x̄′′, x̄′′, x̄′, · · · , x̄′

)>∥∥∥2 +
∥∥∥(x̄′′, x̄′′, x̄′, · · · , x̄′)> − (x̄, · · · , x̄)>

∥∥∥2
or

n∑
i=1

(xi − x̄)2 =

2∑
i=1

(
xi − x̄′′

)2
︸ ︷︷ ︸

(∗)

+

n∑
i=3

(
xi − x̄′

)2
+ 2

(
x̄′′ − x̄

)2
+ (n− 2)

(
x̄′ − x̄

)2︸ ︷︷ ︸
(∗∗)

.

Observe that

(∗) =

2∑
i=1

(xi − x̄′′)2

=

(
x1 −

x1 + x2
2

)2

+

(
x2 −

x1 + x2
2

)2

=

(
x1 − x2

2

)2

+

(
x2 − x1

2

)2

=
1

2
(x2 − x1)2.

Taking

x̄ =
2
(
x1+x2

2

)
+ (n− 2)

(∑n
i=3 xi
n−2

)
n

=
2x̄′′ + (n− 2)x̄′

n
,

the expression (∗∗) simplifies as:

(∗∗) =2

[
x̄′′ − 2x̄′′ + (n− 2)x̄′

n

]2
+

+ (n− 2)

[
x̄′ − 2x̄′′ + (n− 2)x̄′

n

]2
=

2(n− 2)

n
(x̄′ − x̄′′)2 ,

then, the result follows:

n∑
i=1

(xi − x̄)2 =(n− 1)s2 =
1

2
(x2 − x1)2 +

n∑
i=3

(xi − x̄′)2 +
2(n− 2)

n

(
x̄′ − x̄′′

)2
.
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2.1 An approximation for the upper tail of the internally studentized
range distribution

Taking (i, j) instead of (1, 2) and considering random variables, the last result
may be written as

(n− 1)S2 =
1

2
(Xj −Xk)

2
+

n∑
i6=j,k

(
Xi − X̄ ′

)2
+

2(n− 2)

n

(
X̄ ′ − X̄ ′′

)2
.

We show below that the rank of left side quadratic form is n − 1 and the ranks of
the right side quadratic forms are, respectively, 1, n − 3 and 1. Those quadratic
forms are all invariant for the translation Xi − µ, i = 1, 2, . . ., n. Dividing both
sides by σ2,

(n− 1)S2

σ2
=

1

2

(
Xj −Xk

σ

)2

+

n∑
i 6=j,k

(
Xi − X̄ ′

σ

)2

+
2(n− 2)

n

(
X̄ ′ − X̄ ′′

σ

)2

is equivalent to dividing each Xi by σ2. So, the variables in the quadratic form may
be taken as standard normal.

Proposition 2.3. For j 6= k and n ≥ 3, the variate U ′ = (Xj−Xk)/S is distributed
as

T
√

2(n− 1)√
T 2 + n− 2

where T has a Student’s t distribution with n− 2 degrees of freedom.

Proof. Let

U ′ =
Xj −Xk

S
=
Xj −Xk√

S2

=
Xj −Xk√√√√√ 1

n−1

 1
2 (Xj −Xk)

2
+

n∑
i 6=j,k

(
Xi − X̄ ′

)2
+

2(n− 2)

n

(
X̄ ′ − X̄ ′′

)2
=

(Xj −Xk)
√
n− 1√√√√ 1

2 (Xj −Xk)
2

+

n∑
i 6=j,k

(
Xi − X̄ ′

)2
+

2(n− 2)

n

(
X̄ ′ − X̄ ′′

)2 ,

Q =

n∑
i6=j,k

(
Xi − X̄ ′

)2
+

2(n− 2)
(
X̄ ′ − X̄ ′′

)2
n
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and

U ′ =
(Xj −Xk)

√
n− 1√

1
2 (Xj −Xk)

2
+Q

=
[(Xj −Xk)

√
n− 1]/σ√

Q
(n−2)σ2

[
0.5(Xj−Xk)2/σ2

Q
(n−2)σ2

+ n− 2

]

=

(
Xj−Xk√

2σ

)√
2(n− 1)√
Q

(n−2)σ2

1√
0.5(Xj−Xk)2/σ2

Q
(n−2)σ2

+ n− 2

=
T
√

2(n− 1)√
T 2 + n− 2

with

T =

(
Xj −Xk√

2σ

)
√

Q
(n− 2)σ2

.

To derive the distribution of T we show that Q has a chi-square distribution with
n− 2 degrees of freedom. For this we need the classical result:

Fisher-Cochran Theorem (RAO, 2002, p. 185): Consider n independent
standard normal variables Xi ∼ N(0, 1). Let Q1, Q2, . . ., Qk be quadratic forms
with ranks n1, n2, . . ., nk, respectively, such that

X>X =Q1 +Q2 + · · ·+Qk,

where X = (X1, X2, . . ., Xn)>. Then, a necessary and sufficient condition that Qi
∼ χ2

ni and the Qi’s are independent is n =
∑k
i=1 ni.

The decomposition of the corrected total sum of squares

(n− 1)S2 =
1

2
(Xj −Xk)

2
+

n∑
i6=j,k

(
Xi − X̄ ′

)2
+

2(n− 2)

n

(
X̄ ′ − X̄ ′′

)2
,

can be expressed as

(n− 1)S2 = x>Px =x>P1x+ x>P2x+ x>P3x

=Q1 +Q2 +Q3,
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where

P =I − 1

n
J =


n−1
n − 1

n · · · − 1
n

− 1
n

n−1
n · · · − 1

n
...

...
. . .

...
− 1
n − 1

n · · · n−1
n



P1 =
1

2


1 −1 0 · · · 0
−1 1 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0



P2 =



0 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 n−3

n−2 − 1
n−2 · · · − 1

n−2
0 0 − 1

n−2
n−3
n−2 · · · − 1

n−2
...

...
...

...
. . .

...
0 0 − 1

n−2 − 1
n−2 · · · n−3

n−2



P3 =



n−2
2n

n−2
2n − 1

n − 1
n · · · − 1

n

n−2
2n

n−2
2n − 1

n − 1
n · · · − 1

n

− 1
n − 1

n
2

n(n−2)
2

n(n−2) · · · 2
n(n−2)

...
...

...
...

. . .
...

− 1
n − 1

n
2

n(n−2)
2

n(n−2) · · · 2
n(n−2)


are symmetric and idempotent matrices, and J is a n × n unit matrix and their
ranks are their traces, that is, rank(P )= tr(P ) = n − 1, rank(P1)= tr(P1) = 1,
rank(P2)= tr(P2) = n− 3 and rank(P3)= tr(P3) = 1. As Q = x>P2x + x>P3x,
by Fisher-Cochran theorem, Q/σ2 ∼ χ2

n−2.
For the independence, note that Q is a function that depends on X1, X2, . . .,

Xj−1, Xj+1, . . ., Xk−1, Xk+1, . . ., Xn and on Xj and Xk only through the sum Xj+
Xk and, therefore, we have to prove only thatXj−Xk andXj+Xk are independently
distributed. Since both variables are normal, as a consequence of being linear
combinations of normal variables, it suffices to show that their covariance is zero.
That is

Cov(Xj −Xk, Xj + Xk) =Cov (Xj , Xj) + Cov(Xj , Xk) − Cov(Xk, Xj) − Cov (Xk, Xk)

=Var(Xj) − Var(Xk) = 0.

So, Q and Xj−Xk are independently distributed and, therefore, T ∼ tn−2.
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If now we consider a particular sample x = (x1, x2, . . ., xn)>, there are n(n−1)
different choices of j and k, each pair defining a value of U ′. These n(n− 1) values
may be arranged in descending order and denoted by

u′[1] ≥ u
′
[2] ≥ · · · ≥ u

′
[n(n−1)].

Observe that u′[1] = (x(n) − x(1))/s is the internally studentized range of that

particular sample. This construction defines the random variables U ′[1], U
′
[2], . . .,

U ′[n(n−1)]. The random variable U ′ may be written as a mixture of the variables U ′[i]
, i = 1, 2, . . ., n(n− 1). As j and k are arbitrary in the definition of U ′, we choose
uniformly a number i in {1, 2, . . ., n(n − 1)} and take the variable U ′[i]. This can
be expressed formally as:

U ′ =Z1U
′
[1] + Z2U

′
[2] + · · ·+ Zn(n−1)U

′
[n(n−1)],

where Z = (Z1, Z2, . . ., Zn(n−1))
> is a multivariate random variable (ANDERSON,

2003) assuming values in the sample space Ω = {ω1, ω2, . . ., ωn(n−1)}, uniformly,

with ωi = (0, 0, . . ., 1, . . ., 0)>, a vector n(n − 1) × 1 that has 1 in the i-th
position and zeroes elsewhere. So, it is easy to see that the distribution of U ′ may
be expressed as the (Florescu and Tudor, 2014) mixture:

fU ′(u) =
1

n(n− 1)

n(n−1)∑
i=1

fU ′
[i]

(u).

We know fU ′(.) and we are interested in the distribution fU ′
[1]

(.). The idea,

then, is, if there is no overlap between fU ′
[1]

(.) and fU ′
[2]

(.), the upper quantiles of U ′[1]
can be approximated by the upper quantiles of U ′. For this we have the proposition,

Proposition 2.4. The maximum value of U ′[2] is
√

3(n− 1)/2.

Proof. A detailed proof may be found in the appendix of the original article (David
et al., 1954). For the sake of completeness, we outline it here. The key feature of
the statistic U ′ = (Xj − Xk)/S is its invariance for transformations of the form
αX +β, that is, it does not depend on origin or scale. So, we may assume, without
loss of generality, that, for any sample x = (x1, x2, . . ., xn)> arranged in ascending
order of magnitude, x1 = 0, xn−1 = 1. So, the maximum of u[2] = (xn−1 − x1)/s
= 1/s, can be found by minimizing s, restricted to samples with x1 = 0, xn−1 = 1,
in three steps. First consider all samples with a given xn. Then the possible values
for x̄ are in the interval [(1 + xn)/n;∞), and x̄ = (1 + xn)/n corresponds to the
configuration

x1, . . . , xn−2 xn−1 xn

↓ ↓ ↓
0 1 fixed
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Now, in the set of all samples with a given x̄, clearly the minimum of s is
attained with the configuration

x1 x2, . . . , xn−2 xn−1 xn

↓ ↓ ↓ ↓
0 x̄ 1 fixed

Then we may consider only samples with the above configuration. Among
them, it is clear that the minimum s corresponds to xn = 1 and, in this case, the
minimum in given by the configuration

x1 x2, . . . , xn−2 xn−1, xn

↓ ↓ ↓
0 2/3 1

It is clear that the minimum of the s is attained when x2 = x3 = . . . = xn−2
= x̄. In this case s2 = 2/[3(n− 1)] and

u′[2] =
1− 0√

2
3(n−1)

=

√
3(n− 1)

2
.

So, as fU ′
[2]

(u) = 0 for u >
√

3(n− 1)/2, and

fU ′(u) =
1

n(n− 1)

n(n−1)∑
i=1

fU ′
[i]

(u)

for u >
√

3(n− 1)/2, the contribution for fU ′(u) is given only by U ′[1], that is,

fU ′(u) = 1/[n(n− 1)]fU ′
[1]

(u). It follows that upper quantile ξp of fU ′
[1]

(u) coincides

with the upper quantile up/[n(n−1)] of fU ′(u), which, as

U ′ =g(T ) =
T
√

2(n− 1)√
T 2 + n− 2

(1)

is an strictly increasing function, is equal to the function g(.) applied to the quantile
tp/[n(n−1)] of a Student t distribution with n− 2 degrees of freedom. For quantiles

near the quantity
√

3(n− 1)/2,

ξ2p = u2 p
n(n−1)

=2(n− 1)
t2p/[n(n−1)];n−2

n− 2 + t2p/[n(n−1)];n−2
(2)
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is still a good approximation, where tp/[n(n−1)];n−2 is the 100p/[n(n − 1)]% upper
quantile of the Student’s t distribution with n−2 degrees of freedom. This expression
is valid only for computing upper quantiles.

The distribution of U has upper bound of
√

2(n− 1) and lower bound of

2
√

(n− 1)/n, case n is even, and 2
√
n/(n+ 1), case n is odd. Note the overlap

of U ′[1] and U ′[2] distributions in the interval above. Thomson (1955) justifies these
limits only by the exhibition of the corresponding sampling configurations. As the
authors could not find a proof for this anywhere, it is given here:
The upper bound: Consider the sample x1 ≤ x2 ≤ . . . ≤ xn, with x1 = 0 and
xn = 1. Then w = 1 and the upper bound for U = W/S depends only on S. In
this case,

x̄ =

1 +
n−1∑
j=2

xj

n
,

s2 =
1

n− 1

n∑
j=1

(xj − x̄)
2

=
1

n− 1

x̄2 +

n−1∑
j=2

(xj − x̄)
2

+ (1− x̄)
2

 and, for i = 2, . . . , n− 1,

∂s2

∂xi
=

1

n− 1

 2

n
x̄− 2

n

n−1∑
j=2
j 6=i

(xj − x̄) + 2 (xi − x̄)

(
1− 1

n

)
− 2

n
(1− x̄)

 .

∂s2

∂xi
= 0 ⇒ 0 = x̄−

n−1∑
j=2
j 6=i

(xj − x̄) + (xi − x̄) (n− 1)− (1− x̄)

⇒ x̄+ (n− 3) x̄+ (n− 1)xi + x̄ = 1 +

n−1∑
j=2
j 6=i

xj + (n− 1) x̄

⇒ (n− 1)xi = 1 +

n−1∑
j=2
j 6=i

xj ⇒ xi = x̄.

∂2s2

∂x2i
=

1

n− 1

[
2

n2
+

2(n− 3)

n2
+ 2

(
1− 1

n

)2

+ 2

(
− 1

n

)2
]

=
2

n
> 0.

Also, ∂2s2/∂xi∂xk = 0, i 6= k, then the Hessian matrix is a diagonal matrix
with element hii = 2/n. So, the determinant of the Hessian matrix is (2/n)n−2 > 0,
indicating that the s2 has a minimum value for xi = x̄. Therefore, the configuration

812 Rev. Bras. Biom., Lavras, v.36, n.4, p.802-826, 2018 - doi: 10.28951/rbb.v36i4.308



that maximizes U = W/S is xi = x̄, i = 2, . . ., n − 1. In this case, x̄ = 1/2 and
s =

√
1/[2(n− 1)] and, so, U = W/S ≤

√
2(n− 1).

For another proof for the upper bound, consider (1):

T
√

2 (n− 1)√
T 2 + n− 2

=

√
2 (n− 1)√
1 + n−2

T 2

<
√

2 (n− 1), (n > 2).

The lower bound: As s2 has only one null derivative in the interior of the hypercube
0 ≤ x2 ≤ . . . ≤ xn−1 ≤ 1, other existing extremes will be at vertices, that is, xi =
0, 1, i = 2, . . . , n− 1. Suppose k 1’s and (n− 2− k) 0’s, k = 0, . . ., n− 2. In this
case x̄ = (1 + k)/n and

s2 =
1

n− 1

n∑
j=1

(
xj −

1 + k

n

)2

=
1

n− 1

[(
1 + k

n

)2

+ (k + 1)

(
1− 1 + k

n

)2

+ (n− 2− k)

(
1 + k

n

)2
]

=
1

n− 1

[
(k + 1)− n

(
1 + k

n

)2
]
.

Supposing k continuous and differentiating

d

dk
s2 =0 ⇒ 0 =

1

n− 1

[
1− 2

(
1 + k

n

)]
⇒ k =

n

2
− 1.

Case n is odd then n = 2α, where α is an integer, k = 2α
2 −1 = α−1 ⇒

k = n
2 − 1.
Thus

S2 ≤ 1

n− 1

[
n

2
− n

(
1

2

)2
]

=
n

4 (n− 1)
.

and

U =
W

S
≥ 1√

n
4(n−1)

= 2

√
n− 1

n
.

Case n is even then n = 2α+1 k = 2α+1
2 −1 = α− 1

2 ≈ α ⇒ k = n−1
2 .

So

S2 ≤ 1

n− 1

[(
n− 1

2
+ 1

)
− n

(
1 + n−1

2

n

)2
]

=
n+ 1

4n

and

U =
W

S
≥ 1√

n+1
4n

= 2

√
n

n+ 1
.
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2.2 A new approximation to the upper tail based on the maximum of
U ′

Our approach to the distribution of U = W/S is based on the distribution of
the maximum of U ′ and should be used only to obtain upper quantiles. Since we
have n(n− 1) statistics, the distribution of the maximum is

P (U ≤ u) =P (max(U ′) ≤ u) = [FU ′(u)]
n(n−1)

.

Following the proof of proposition 2.4, we consider that different U ′’s are identical
and nearly independent, since their distributions have a small overlap.

If we use the relationship given by (1) we get

P (U ≤ u) =

[
FT

( √
n− 2u√

2(n− 1)− u2

)]n(n−1)
, (3)

where FT (t) is the cumulative distribution function of the Student’s t with n − 2
degrees of freedom.

Upper quantile of the distribution of U can be obtained by inverting (3) for
a given probability 1 − α. Thus, considering p = (1 − α)1/[n(n−1)], we can obtain
quantiles u

1−α by

u2
1−α

=2(n− 1)
t2p;n−2

n− 2 + t2p;n−2
, (4)

where tp;n−2 is the 100p% quantile from the Student’s t distribution with n − 2
degrees of freedom.

2.3 Approximation based on Monte Carlo simulations

The above approximations are valid only when computing upper quantiles
of the internally studentized range. Pearson’s curves, used to approach the true
distribution, must be obtained for each sample size and they are not available
in David, Hartley e Pearson (1954). Also, only some combinations of lower
percentile points and sample sizes are available, with other lower points obtained by
interpolations. To overcome this limitations we propose here an approach based on
Monte Carlo simulations. For this, a random sample X1, X2, . . ., Xn of size n from
the standard normal distribution is generated by the Box-Müller algorithm. Then
we construct a realization of U = W/S, denoted by u. This process is repeated to
obtain a Monte Carlo sample of size N from the distribution of U . The sample size
N should be chosen to achieve some previously fixed precision. The error bound of
the Monte Carlo simulation is proportional to 1/

√
N . Let u1, u2, . . ., uN be this

sample. To compute the cumulative distribution function for a given value ξ, we
compute

p =

∑N
i=1 I(ui ≤ ξ)

N
, (5)
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where I(ui ≤ ξ) is the indicator function that returns 1, if ui ≤ ξ, and 0, otherwise.
Given the cumulative distribution p, we arrange the elements in ascending

order and pick up the Np-th element of the resulting vector. Since Np is not
necessarily an integer we define j = bNpc, the largest integer less than or equal to
Np. Considering, in this context, that u(1), u(2), . . ., u(N) represents the internally
studentized range Monte Carlo sample of size N , arranged in ascending order, the
quantile ξp is computed by

ξp = u(j), where j = bNpc. (6)

The R (R Core Team, 2018) codes to generate random samples of the internally
studentized range distribution and to compute cumulative distribution functions
(5) and quantiles (6) are available in the appendix B. Illustrative examples are
presented below. In the next section, we compare our Monte Carlo approach with
the other two approaches with respect to chosen sample sizes and percentiles.
Besides that, we show some lower tail quantiles from the distribution of the
internally studentized range.

3 Comparison of approximations

In a first stage we obtain quantiles from both proposed approximations to
compare their accuracy with that of the approach of David, Hartley e Pearson
(1954). Quantiles from the approximations (2) and (4) are compared for different
combinations of n and cumulative probability 1−α. Values of n = 3(1)20, 20(5)50,
50(10)100, 500, 1, 000, 10, 0000 and 1 − α = 0.900, 0.950, 0.990 and 0.995 are
considered. Results are shown in Table 1. There is a very good agreement
between both approximations, even for small sample sizes. They should be used
only for determining upper tails, since they are based on quantities that are not
independently distributed and the lower quantiles are very inaccurate.

The upper and lower quantiles from the above approximations are compared
to those from Monte Carlo simulations, considering some combinations of 1 − α
and n (Table 2). Lower quantiles are computed for 1 − α = 0.005, 0.01, 0.05 and
0.10. The results for the upper quantiles should be compared to those showed in
Table 1. There is a very accurate agreement among all approximations, specially
for small sample sizes (n ≤ 20). So, for large n, the Monte Carlo simulations show
larger differences for the upper quantiles among the three methods. It could be
considered that the differences are due to the Monte Carlo errors. For example, with
n = 100, using N = 100, 000 Monte Carlo simulations, the 95% upper quantile is
5.909 (Table 2). If we use N = 3, 000, 000 monte Carlo simulations, the 95% upper
quantile is 5.903, what is neither close to the (DAVID; HARTLEY; PEARSON,
1954) approximation, 5.990, nor to our approximation, 5.983.

For very large samples, we expect that the range and the standard deviation
are asymptotically independently distributed. Therefore, we can use the externally
studentized range distribution to computes approximate quantiles. For n = 10, 000,
using this approach, we find that the 95% upper quantile is 8.481. This value is
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Table 1 - Percentage points of the distribution of the ratio of range to the standard
deviation U = W/S in sample size of n from a normal population using
approximations of David, Hartley e Pearson (1954) and of the maximum
of the studentized sample pair differences

David et al. Distribution of the Maximum
n 0.90 0.95 0.99 0.995 0.90 0.95 0.99 0.995

3 1.997 1.999 2.000 2.000 1.997 1.999 2.000 2.000
4 2.409 2.429 2.445 2.447 2.407 2.429 2.445 2.447
5 2.712 2.755 2.803 2.813 2.708 2.754 2.803 2.813
6 2.949 3.012 3.095 3.115 2.944 3.010 3.095 3.115
7 3.143 3.222 3.338 3.369 3.137 3.220 3.338 3.369
8 3.308 3.399 3.543 3.585 3.300 3.396 3.543 3.585
9 3.449 3.552 3.720 3.771 3.441 3.548 3.720 3.771

10 3.574 3.685 3.875 3.935 3.565 3.681 3.874 3.935
11 3.685 3.803 4.012 4.079 3.675 3.799 4.011 4.079
12 3.785 3.909 4.134 4.208 3.774 3.905 4.133 4.208
13 3.875 4.005 4.244 4.325 3.864 4.001 4.243 4.325
14 3.958 4.093 4.344 4.431 3.947 4.088 4.343 4.430
15 4.034 4.173 4.435 4.527 4.023 4.168 4.435 4.527
16 4.104 4.247 4.519 4.616 4.093 4.242 4.519 4.615
17 4.170 4.316 4.597 4.698 4.158 4.311 4.596 4.697
18 4.231 4.380 4.669 4.774 4.219 4.375 4.668 4.773
19 4.288 4.440 4.737 4.844 4.276 4.435 4.736 4.844
20 4.342 4.496 4.800 4.911 4.330 4.491 4.799 4.910
25 4.571 4.734 5.064 5.187 4.558 4.728 5.063 5.187
30 4.751 4.921 5.268 5.401 4.738 4.915 5.267 5.400
35 4.899 5.073 5.433 5.573 4.886 5.067 5.432 5.572
40 5.024 5.201 5.571 5.715 5.010 5.194 5.570 5.715
45 5.131 5.311 5.688 5.837 5.117 5.304 5.687 5.836
50 5.226 5.407 5.790 5.942 5.212 5.400 5.789 5.941
60 5.384 5.568 5.960 6.116 5.370 5.562 5.959 6.116
70 5.515 5.700 6.098 6.257 5.500 5.693 6.097 6.257
80 5.624 5.811 6.213 6.375 5.610 5.804 6.212 6.374
90 5.719 5.906 6.311 6.475 5.705 5.899 6.310 6.474

100 5.802 5.990 6.397 6.562 5.787 5.983 6.396 6.561
500 6.905 7.087 7.492 7.660 6.891 7.081 7.491 7.659

1,000 7.309 7.485 7.880 8.044 7.295 7.479 7.879 8.043
10,000 8.475 8.633 8.988 9.137 8.463 8.627 8.987 9.136

closer to the Monte Carlo quantile, showing that this approach is more accurate
than the other two above. A second advantage of this method is the possibility
to compute lower quantiles, what is not possible with the two previous methods.
Finally, it should be noticed that the number of Monte Carlo simulations in Table
2 was reduced to N = 30, 000, due to computer memory limitation.
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Table 2 - Percentage points of the distribution of the ratio of range to the standard
deviation U = W/S in sample size of n from a normal population using
Monte Carlo approximation with N = 100, 000

Lower quantiles Upper quantiles
n 0.005 0.01 0.05 0.10 0.90 0.95 0.99 0.995

3 1.739 1.737 1.758 1.782 1.997 1.999 2.000 2.000
4 1.817 1.851 1.979 2.054 2.408 2.429 2.445 2.447
5 1.989 2.023 2.140 2.220 2.712 2.754 2.804 2.813
6 2.114 2.156 2.281 2.360 2.948 3.012 3.095 3.115
7 2.219 2.263 2.401 2.485 3.145 3.224 3.341 3.368
8 2.309 2.355 2.503 2.591 3.308 3.401 3.547 3.588
9 2.385 2.437 2.592 2.685 3.450 3.552 3.723 3.772

10 2.459 2.513 2.673 2.769 3.575 3.682 3.876 3.940
15 2.745 2.799 2.969 3.074 4.026 4.171 4.437 4.525
20 2.927 2.987 3.177 3.289 4.318 4.487 4.796 4.910
25 3.082 3.139 3.335 3.454 4.535 4.714 5.064 5.184
30 3.207 3.274 3.472 3.590 4.698 4.893 5.247 5.389
35 3.312 3.376 3.578 3.698 4.840 5.043 5.427 5.563
40 3.399 3.473 3.675 3.798 4.954 5.157 5.560 5.711
45 3.479 3.546 3.754 3.878 5.055 5.266 5.687 5.831
50 3.550 3.622 3.833 3.957 5.144 5.353 5.775 5.935
60 3.671 3.742 3.955 4.082 5.291 5.511 5.935 6.090
70 3.774 3.851 4.065 4.193 5.410 5.632 6.074 6.244
80 3.867 3.945 4.158 4.288 5.516 5.736 6.179 6.344
90 3.951 4.023 4.237 4.366 5.606 5.829 6.288 6.443

100 4.013 4.084 4.312 4.443 5.684 5.909 6.354 6.519
500 5.069 5.143 5.360 5.491 6.721 6.952 7.421 7.610

1,000 5.498 5.576 5.792 5.916 7.112 7.336 7.791 7.983
10,000∗ 6.826 6.895 7.084 7.196 8.268 8.467 8.875 9.044
∗ N = 30, 000.

4 Exact distributions

The exact distribution for the studentized range is known only for sample sizes
n = 2, 3, 4. For n = 2,

W

S
=

X(2) −X(1)√(
X1 − X̄

)2
+
(
X2 − X̄

)2 =
X(2) −X(1)√(

X1−X2

2

)2
+
(
X2−X1

2

)2 =
√

2,

with any parent distribution.
For n = 3, Thomson (1955), based in Lieblein (1952), presents, without the

proof, the expression of the distribution for the normal case. As the authors could
not find that proof anywhere, it is presented here, for the normal case. For the
uniform distribution, a new result was obtained and was showed in the sequence of
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the normal case.

The normal case: Suppose X(1) < X(2) < X(3) an ordered sample from the same
normal population. As W/S is invariant for translation and homothety, we may
consider samples with configuration 0 < Y = (X(2) − X(1))/(X(3) − X(1)) < 1. If
now, following the work of Lieblein (1952), we denote by (X ′′, X ′) the closest of
the pairs

(
X(1), X(2)

)
and

(
X(2), X(3)

)
we may define

Y1 = X ′ −X ′′ =

{
Y case X(2) −X(1) ≤ X(3) −X(2)

1− Y case X(2) −X(1) > X(3) −X(2).

Observe that 0 < Y1 < 1/2 and each value of Y1 may came from two different

configurations,
(
X(1), X(2), X(3)

)
or
(
X∗(1), X

∗
(2), X

∗
(3)

)
, with X∗(3) −X

∗
(1) = X(3) −

X(1) and X(3) −X(2) > X(2) −X(1) = X∗(3) −X
∗
(2) < X∗(2) −X

∗
(1). In this case,

W

S
=

1√
1
2

[(
1+Y1

3

)2
+
(
Y1 − 1+Y1

3

)2
+
(
1− 1+Y1

3

)2]
=

3
√

2√
(1 + Y1)

2
+ (2Y1 − 1)

2
+ (2− Y1)

2

=
3
√

2√
1 + 2Y1 + Y 2

1 + 4Y 2
1 − 4Y1 + 1 + 4− 4Y1 + Y 2

1

=
3
√

2
√

6
√

1− Y1 + Y 2
1

=

√
3√

1− Y1 + Y 2
1

= g (Y1) .

Thus

z =

√
3√

1− y1 + y21
⇒ 0 = 1− y1 + y21 −

3

z2

and

⇒ y1 = g−1 (z) =
1−

√
1− 4

(
1− 3

z2

)
2

=
1−
√

3
√

4− z2
2

.

d

dz
y1 =− 1

4

[
1− 4

(
1− 3

z2

)]− 1
2 (
−24 z−3

)
=

2
√

3

z2
√

4− z2
.

818 Rev. Bras. Biom., Lavras, v.36, n.4, p.802-826, 2018 - doi: 10.28951/rbb.v36i4.308



Therefore,

fW/S (z) =

∣∣∣∣ ddz g−1 (z)

∣∣∣∣ fY1

(
g−1 (z)

)
=

2
√

3

z2
√

4− z2
fY1

(
1

2
−
√

3

2

√
4− z2
z

)
.

According to Lieblein (1952), case n = 3 , fY1
(y1) = 3

√
3/[π

(
1− y1 + y21

)
]. So, for

n = 3,

fW/S (z) =
2
√

3

z2
√

4− z2
3
√

3

π

[
1−

(
1
2 −

√
3
2

√
4−z2
z

)
+
(

1
2 −

√
3
2

√
4−z2
z

)2]
=

6

π
√

4− z2
,

FW/S (z) =

z∫
√
3

6

π
√

4− u2
du

=1− 6

π
arccos

(z
2

)
and, finally,

z =2 cos
[π

6
(1− p)

]
,

as obtained by Thomson (1955), where p is the cumulative probability.
For n = 3, a new result was obtained for the exact distribution in the uniform

case. The distribution followed and the proof are presented below.
The uniform case: As already shown in the normal case, for n = 3,

W

S
=

√
3√

1− Y1 + Y 2
1

= g (Y1) ,

fW/S (z) =

∣∣∣∣ ddz g−1 (z)

∣∣∣∣ fY1

(
g−1 (z)

)
.

As Lieblein (1952) showed that Y1 is uniformly distributed in the interval(
0, 12
)
,

fW/S (z) =2

∣∣∣∣ ddz g−1 (z)

∣∣∣∣ =
4
√

3

z2
√

4− z2
,

(√
3 < z < 2

)
,

and with cumulative distribution function and quantile function given by

FW/S(z) =1−
√

3
√

4− z2
z

,

z =
2
√

3√
3 + (1− p)2

,

where 0 < p < 1 is the cumulative probability.
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5 Application: a new test for normality

A new normality test is proposed, as already suggested by David, Hartley e
Pearson (1954). Under normality, the observed U statistic u = w/s is a typical
value of the internally range distribution, where w and s are the observed values of
the sample range and standard deviation, respectively. Therefore, given a random
sample of size n, the u statistic value should be in the interval [uα/2; u1−α/2], under
the null hypothesis of normality, where up is the 100p% quantile from the internally
studentized range distribution, that is P (uα/2 ≤ U ≤ u1−α/2) = 1 − α. Hence, to
test the normality hypothesis, the test statistic u is computed and the p-value is
computed from the internally studentized range distribution by

p-value =2 min [P (U ≤ u); 1− P (U ≤ u)] ,

since the distribution of U is asymmetric. This p-value is computed by simulation,
as described in subsection 2.3.

The performance of the normality test based on the internally studentized
range distribution was appraised by Monte Carlo simulations. Further, its
relative performance is compared with the Shapiro-Wilk test using the toolkit of
(ROYSTON, 1993). The proportions of rejections under H0 were computed to
evaluate the type I error rates of both tests, considering several sample sizes. The
power was also evaluated for several sample sizes and probability distributions. The
sample sizes considered were 50, 100 and 500. The non-normal distributions were
the Student t with ν = 1 and ν = 30 degrees of freedom, the uniform, the beta
with parameters α = 5 and β = 1 and the Pearson VII distribution with m = 2,
location parameter λ = 0 and scale parameter α = 5. A total of 5, 000 Monte Carlo
simulations were performed. Also, 30, 000 values were simulated to obtain the null
distribution of the internally studentized range.

Type I error rates are shown in Table 3. The proposed internally studentized
distribution test (ISRD) and the Shapiro-Wilk (SW) test are both exact, since their
type error rates are equal to the nominal level α. The small differences were due
to the Monte Carlo error. Therefore, the proposed test may have some advantage
under some alternative distributions.

The power of the ISRD and SW tests are shown in Table 4. The performance of
the ISRD test was very good for symmetric distributions like Student t and Pearson
VII. For n > 50 its performance was almost equal of the SW test, considered one of
the most powerful test. For the uniform case, where the distribution besides being
symmetric is also platykurtic, the ISRD test performed much better, mainly for
small sample sizes.

For the beta distribution, however, the ISRD test showed smaller power values
than the SW. This distribution is very asymmetric, with the chosen parameters. The
Pearson VII distribution, where our test was also less powerful, was a symmetric
and leptokurtic distribution. We did not intend that our test performed better than
the SW test. It was considered here for illustrative purpose only.
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Table 3 - Type I error rates computed in 5, 000 Monte Carlo simulations of the
internally studentized range distribution test (ISRD) and the Shapiro-
Wilk test (SW) for normality, considering several n and α

Tests
α n ISRD SW

50 0.0470 0.0498
0.05 100 0.0504 0.0496

500 0.0500 0.0484
50 0.1042 0.0990

0.10 100 0.0958 0.0960
500 0.1002 0.1026

Table 4 - Power computed in 5, 000 Monte Carlo simulations of the internally
studentized range distribution test (ISRD) and the test of Shapiro-Wilk
(SW) for normality, considering several alternative distributions, n and α

α = 0.05 α = 0.10
Distribution n ISRD SW ISRD SW
t with ν = 1 0.9678 0.9974 0.9808 0.9984
t with ν = 30 0.0658 0.0766 0.1200 0.1330
Uniform 50 0.9542 0.7470 0.9852 0.8840
Beta 0.1882 0.9910 0.2792 0.9982
Pearson VII 0.7870 0.8620 0.8404 0.8962
t with ν = 1 0.9982 1.0000 0.9988 1.0000
t with ν = 30 0.0786 0.0798 0.1424 0.1378
Uniform 100 1.0000 0.9952 1.0000 0.9992
Beta 0.2742 1.0000 0.3672 1.0000
Pearson VII 0.9506 0.9834 0.9670 0.9886
t with ν = 1 1.0000 1.0000 1.0000 1.0000
t with ν = 30 0.1334 0.1394 0.2102 0.2110
Uniform 500 1.0000 1.0000 1.0000 1.0000
Beta 0.5608 1.0000 0.6630 1.0000
Pearson VII 1.0000 1.0000 1.0000 1.0000

Conclusions

The statistical mathematics of the theory of the internally studentized range is
complex and plentiful of original ideas. For sample size 3, this problem is related to
the distribution of the closest pair in a sample of three observations. The geometric
approach has shown to be helpful in clarifying some aspects of the theory.
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The approximation using the distribution of the maximum of the studentized
sample pair differences were very accurate even for small sample sizes. It should be
used only for determining upper tails.
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RESUMO: O presente artigo pretende revisitar a distribuição da razão da amplitude

pelo desvio padrão amostral, conhecida como distribuição da amplitude estudentizada

internamente, no caso normal. Esta distribuição é importante em várias áreas

do conhecimento, como controle de qualidade e inferência, nos testes de falta de

homogeneidade dos dados e de curtose. Um distribuição alternativa a que foi apresentada

por David et al. (1954), baseada na distribuição do máximo é proposta. Exibiu-se prova

detalhada da distribuição da amplitude estudentizada internamente no caso normal e

para amostras de tamanho 3. Também foi apresentado um novo resultado: a distribuição

no caso uniforme para amostras de tamanho 3.

PALAVRAS-CHAVE: Estat́ıstica de ordem; o mais próximo de três; distribuição normal;

distribuição uniforme
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A An algebraic proof for the decomposition of the sum of
squares

We want to proof the identity

(n− 1)s2 =
1

2
(xj − xk)

2
+

n∑
i 6=j,k

(xi − x̄′)
2

+
2(n− 2)

n
(x̄′ − x̄′′)2 .

Without loss of generality, we can consider (xj , xk) = (xn−1, xn). Thus

(n− 1)s2 =

n∑
i=1

(xi − x̄)
2

=
1

n2

[
n(n− 1)

n∑
i=1

x2i − 2n

n−1∑
i=1

n∑
`=i+1

xix`

]

=
1

2
(xn−1 − xn)

2
+ χ2σ2,

where

χ2σ2 =
1

n2

[
n(n− 1)

n∑
i=1

x2i − 2n

n−1∑
i=1

n∑
`=i+1

xix`

]
− 1

2
(xn−1 − xn)

2

=
n− 1

n

n∑
i=1

x2i −
2

n

n−1∑
i=1

n∑
`=i+1

xix` +
n− 2

2n

(
x2n−1 + x2n

)
+ xn−1xn

resulting on

χ2σ2 =
n− 1

n

n−2∑
i=1

x2i −
2

n

n−1∑
i=1

n∑
`=i+1

xix` +
n− 2

2n

(
x2n−1 + x2n

)
+
n− 2

n
xn−1xn. (7)

Since, in this particular case,

x̄′ =
1

n− 2

n−2∑
i=1

xi and x̄′′ =
xn−1 + xn

2
,

then

χ2σ2 =

n−2∑
i=1

(xi − x̄′)
2

+
2(n− 2)

n
(x̄′ − x̄′′)2

=
1

(n− 2)2

[
(n− 2)(n− 3)

n−2∑
i=1

x2i − 2(n− 2)

n−3∑
i=1

n−2∑
`=i+1

xix`

]
+

+
2(n− 2)

n

(
1

n− 2

n−2∑
i=1

xi −
xn−1 + xn

2

)2
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=
n− 3

n− 2

n−2∑
i=1

x2i −
2

n− 2

n−3∑
i=1

n−2∑
`=i+1

xix`+

+
2(n− 2)

n

(
1

n− 2

n−2∑
i=1

xi −
xn−1 + xn

2

)2

=
n− 3

n− 2

n−2∑
i=1

x2i −
2

n− 2

n−3∑
i=1

n−2∑
`=i+1

xix`+

+
2

n(n− 2)

(
n−2∑
i=1

xi

)2

+
n− 2

2n
(xn−1 + xn)

2 − 2

n
(xn−1 + xn)

n−2∑
i=1
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=
n− 3

n− 2

n−2∑
i=1

x2i −
2
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n−3∑
i=1

n−2∑
`=i+1
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2

n(n− 2)
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i=1

x2i+

+
4

n(n− 2)

(
n−3∑
i=1

n−2∑
`=i+1

xix`

)
+
n− 2

2n
(xn−1 + xn)

2−

− 2

n
(xn−1 + xn)

n−2∑
i=1

xi

=
n− 1

n

n−2∑
i=1

x2i −
2

n

n−3∑
i=1

n−2∑
`=i+1

xix` +
n− 2

2n
(xn−1 + xn)

2−

− 2 (xn−1 + xn)

n

n−2∑
i=1

xi,

resulting on

χ2σ2 =
n− 1

n

n−2∑
i=1

x2i −
2

n

n−3∑
i=1

n−2∑
`=i+1

xix` +
n− 2

2n

(
x2n−1 + x2n

)
+
n− 2

n
xn−1xn. (8)

Since (7)=(8), the proof is complete.
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B R codes

# random samples from the normal internally studentized range

# given the sample size n, where N is the number of samples

# simulated

rISR <- function(N=1, n)

{

sr <- function(x) return((max(x)-min(x))/sd(x))

return(apply(matrix(rnorm(N * n), N, n), 1, sr))

}

# function to obtain cumulative probabilities from the

# internally studentized range by Monte Carlo simulations.

# Given N: the number of simulations, n: the sample size

# and the quantile q > 0.

pISR <- function(q, n, N=1)

{

x <- rISR(N, n)

return(length(x[x <= q]) / N)

}

# function to obtain quantiles from the

# internally studentized range by Monte Carlo simulations.

# Given N: the number of simulations, n: the sample size

# and the percentile 0< p < 1.

qISR <- function(p, n, N=1)

{

x <- sort(rISR(N, n))

i <- trunc(N*p)

if (any(i<=0)) i[i<=0] <- 1

q <- x[i]

return(q)

}

# examples

# random sample

N <- 100000

n <- 10

x <- rISR(N, n)

hist(x)

# cumulative probabilities

q <- 3.685

pISR(q, n, N)

# quantiles

p <- c(0.95, 0.05)

qISR(p, n, N)
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