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ABSTRACT: The purpose of this study was to establish contrasts in multivariate

nonlinear mixed models to verify the effects of treatments in experiments with

longitudinal data and multiple responses. The evaluated nonlinear functions were the

three parameters curves logistic, Gompertz and von Bertalanffy. The random variables

were added to the fixed parameters, asymptote \alpha , abscissa of the inflection point \beta ,

and parameter \gamma . The best adjusted model was expanded with covariates, which

establish orthogonal contrasts, in order to verify main effects and interactions in factorial

experiments. The methodology was applied to analyse data of an experiment with citrus,

in which case the logistic bivariate mixed effects model was the best fit. The chosen

model allowed comparisons between treatments in a global context of more than one

dependent variable and throughout the measurement period.
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1 Introduction

In longitudinal experiments with multiple responses, the use of multivariate
nonlinear mixed models may be advantageous in comparison with the univariate
model. Among other advantages, the joint analysis can evaluate the relation
between the treatments and all the responses simultaneously (VERBEKE et al.,
2014). The superiority of the multivariate model, compared with the univariate, was
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related in several articles as Strathe et al., 2011, Kuramoto et al., 2013. In addition,
when there are many individuals, each one with growth measurements over time,
the nonlinear mixed effects models are more appropriate than fixed effects because
it is possible to evaluate growth at both the individual unit level, as well as the
population level (HARRING and BLOZIS, 2014; LI and JIANG, 2013; REGADAS
FILHO et al., 2014). Nonlinear models are widely employed not only to quantify
growth, but also to make comparisons between the parameters of the model, to
verify the influence of treatment groups in planned experiments (REGADAS FILHO
et al., 2014; STRATHE et al., 2010; KARADAVUT et al., 2017).

The purpose of this study was to establish contrasts in multivariate nonlinear
mixed models to verify the effects of treatments in longitudinal factorial experiments
with multiple responses. The logistic, Gompertz and von Bertalanffy functions were
employed, and the models were implemented with dummy-variables to make the
comparisons between treatments. As an example of application of the methodology
we analysed production and trunk circumference data of sweet orange trees, with
five cups budded on five rootstocks, over six years.

2 Materials and methods

The analyses were developed in three steps. In step 1 fixed univariate models
are adjusted with the objective of verifying the adjustment of the logistic, Gompertz
and von Bertalanffy functions to the experimental data. The observation for the
ith individual, i = 1, . . . , N at time xj , j = 1, . . . , n is

yij = F (xj ,\bfittheta ) + \epsilon ij , (1)

where \bfittheta = parameter vector. The errors \epsilon ij are assumed to be normally,
independently distributed with mean zero, constant variance \sigma 2

\epsilon , and cov (\epsilon j , \epsilon j\prime ) =
0, j \not = j\prime .

The functions F in (1), parameterized for inflection point, are:

Logistic, F (xj ,\bfittheta ) =
\alpha 

\{ 1 + exp [\gamma (\beta  - xj)]\} 
, (2)

Gompertz, F (xj ,\bfittheta ) = \alpha exp \{  - exp [\gamma (\beta  - xj)]\} , (3)

von Bertalanffy, F (xj ,\bfittheta ) = \alpha 

\biggl\{ 
1 - 1

3
exp [\gamma (\beta  - xj)]

\biggr\} 3

, (4)

\alpha > 0, \gamma > 0,\bfittheta = [\alpha \beta \gamma ]
\prime 
and x > 0. Parameter \alpha is the asymptote, \beta is the

abscissa of the inflection point and \gamma is related to the maximum growth rate.

In step 2 random variables u1, u2 and u3 were added to the fixed parameters,
\alpha , \beta , \gamma , respectively, to account for their variations among the subjects. It was
assumed that the random variables are normally distributed with null mean vector
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and covariance matrix \bfitphi r\times r, r = number of random variables,

(u1i u2i u3i)
\prime \sim N (0,\bfitphi ) , (5)

\bfitphi 3\times 3 =

\left(  var (u1i)
cov (u1iu2i) var (u2i)
cov (u1iu3i) cov (u2iu3i) var (u3i)

\right)  =

\left(  v11
v12 v22
v13 v23 v33

\right)  , (6)

i = 1, . . . , N subjects.
The functions (2) to (4) are now:

Logistic F (xj ,\bfittheta i) =
(\alpha + u1i)

\{ 1 + exp [(\gamma + u3i) ((\beta + u2i) - xj)]\} 
, (7)

Gompertz F (xj ,\bfittheta i) = (\alpha + u1i) exp \{  - exp [(\gamma + u3i) ((\beta + u2i) - xj)]\} ,
(8)

von Bertalanffy F (xj ,\bfittheta i) = (\alpha + u1i)

\biggl\{ 
1 - 1

3
exp [(\gamma + u3i) ((\beta + u2i) - xj)]

\biggr\} 3

,

(9)

\bfittheta i = [\alpha \beta \gamma u1i u2i u3i]
\prime 
, i = 1, . . . , N subjects, j = 1, . . . , n times.

The mixed models can be fitted with only one random variable, u1, or u2, or
u3, with two variables, u1 and u2, u1 and u3, or u2 and u3, and the complete model
with u1, u2 and u3. In step 2 we take into account the variations among individuals
of the population, choosing the random variables in the model, in order to have a
good prediction of response.

In these steps 1 and 2, the criteria used to choose the model that best described
the growth were residual mean squares (rms), the biological meaning of parameter
estimates and the convergence in the iteration process of adjustment. In the step
2 the best mixed model, adjusted to each function (logistic, Gompertz and von
Bertalanffy), was determined by the likelihood ratio test. The test verifies the null
hypotheses, when the models are hierarchical:

H0: models with one random variable, u1, or u2, or u3 = fixed model. (10)

H0: models with two random variables = models with one random variable. (11)

H0: model with three random variables = models with two random variables.
(12)

Alternative hypotheses are one-sided, Ha: alternative model is better than
null model. The probability distribution of the test is approximately a chi-squared
distribution, with degrees of freedom equal to the number of parameters of
alternative model minus the number of parameters of null model. Only the model
chosen in these steps will be analyzed in the step 3.

In the step 3 we added dummy variables to the model chosen in the earlier steps
and a multivariate model was fitted to the response data. The fixed parameters \alpha ,
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\beta and \gamma could be functions of the factors of the experimental design. For instance,
the value of the asymptote of the ith subject, \alpha i, will be the average value \alpha , plus
the effects of treatments that characterize the individual. In a factorial experiment,
for instance, the comparisons aim to answer the questions: ``How did one factor
influence the parameters?"" and ``Considering a determined level of a factor, how is
the influence of the another factor in these parameters?"" These questions refer to
the main effect of factors and to the interaction between factors, respectively, in the
analysis of the experiment. In a factorial experiment, where the treatments have
the same number of replicates, with two factors, a levels of factor A and b levels
of factor B, the coefficients of orthogonal contrasts for main effect of factor A and
for interaction effect of factor B in each level of A can be formulated as follows. Ai

= effect of the ith level of factor A, i = 1, . . . , a; Bj = effect of the jth level of B,
j = 1, . . . , b.

Table 1 - Coefficients of orthogonal contrasts for comparison of A levels (main
effect)

Contrasts
A1 A2 A3 . . . Aa - 1 Aa

B1 . . . Bb B1 . . . Bb B1 . . . Bb B1 . . . Bb B1 . . . Bb

C1 a - 1 . . . a - 1  - 1 . . .  - 1  - 1 . . .  - 1  - 1 . . .  - 1  - 1 . . .  - 1
C2 0 . . . 0 a - 2 . . . a - 2  - 1 . . .  - 1  - 1 . . .  - 1  - 1 . . .  - 1
. . .
Ca - 1 0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1  - 1 . . .  - 1

The sum of the coefficients of each contrast is zero; for instance in C1, b(a  - 
1) + b(a  - 1)( - 1) = 0. The sum of the product of the coefficients for each pair of
contrasts is zero, that is, the contrasts are orthogonal; for instance C1 is orthogonal
to C2: b(a - 1)(0) + b(a - 2)( - 1) + b(a - 2)( - 1)( - 1) = 0. (Table 1).

Table 2 - Coefficients of orthogonal contrasts for comparing B levels within each A
level (interaction effect)

Contrasts
A1 A2 . . . Aa

B1 B2 B3 . . . Bb - 1 Bb B1 . . . Bb B1 . . . Bb

C1 b - 1  - 1  - 1 . . .  - 1  - 1 0 . . . 0 0 . . . 0
C2 0 b - 2  - 1 . . .  - 1  - 1 0 . . . 0 0 . . . 0
. . .
Cb - 1 0 0 0 . . . 1  - 1 0 . . . 0 0 . . . 0

The other orthogonal contrasts are constructed in the same way. (Table 2).

Considering the bivariate model, the observations yijl for the ith subject, i =
1, . . . , N , at time j, j = 1, . . . , n, for the dependent variables, l = 1, 2 are represented
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in the matrix \bfity i(n\times l) as follow:

\bfity i(n\times 2) =

\left(    
yi11 yi12
yi21 yi22
. . . . . .
yin1 yin2

\right)    =

\left(    
f (\theta i, xi, covi)i11 f (\theta i, xi, covi)i12
f (\theta i, xi, covi)i21 f (\theta i, xi, covi)i22

. . . . . .
f (\theta i, xi, covi)in1 f (\theta i, xi, covi)in2

\right)    +

\left(    
ei11 ei12
ei21 ei22
. . . . . .
ein1 ein2

\right)    ,

(13)
where \bfitf (\bfittheta i,\bfitx i, \bfitc \bfito \bfitv i) and \bfite i are matrices n\times l of terms expectation value and error,
respectively; in (13) f is a function with parameter vectors \bfittheta i, independent variable
xi, and covariates covi; \bfitx i(n\times l) is a matrix of the values of independent variable of
the ith subject. The q = 6 fixed parameters are represented as

\bfitbeta (6\times 1) = (\alpha 1, \beta 1, \gamma 1, \alpha 2, \beta 2, \gamma 2)
\prime 

(14)

and the r = 6 random effects for the ith subject and l = 1, 2 as

\bfitgamma i(6\times 1) = (u1i l=1, u2i l=1, u3i l=1, u1i l=2, u2i l=2, u3i l=2)
\prime 

(15)

The parameter vector \bfittheta i is obtained with (14) and (15)

\bfittheta i(12\times 1) = (\alpha 1, \beta 1, \gamma 1, \alpha 2, \beta 2, \gamma 2, u1i 1, u2i 1, u3i 1, u1i 2, u2i 2, u3i 2)
\prime 

(16)

It is assumed that \bfitgamma i \sim N (0,\bfitphi r\times r), with

\bfitphi 6\times 6 =

\left(        
v11 11

v12 11 v22 11

v13 11 v23 11 v33 11

v11 12 v21 12 v31 12 v11 22

v12 12 v22 12 v32 12 v12 22 v22 22

v13 12 v23 12 v33 12 v13 22 v23 22 v33 22

\right)        (17)

where vkk\prime ll\prime = cov (uk l, uk\prime l\prime ), uk l, uk\prime l\prime = random variables associated to the
fixed parameters k, k\prime = 1, 2, 3, and dependent variables l, l\prime ,= 1, 2.

It is assumed also that \bfite i \sim N (0,\bfitR i), \bfitR i with dimension 2n \times 2n. The \bfitR 
structure assumes that each line of the matrix \bfite i has variances \sigma 

2
l=1 and \sigma 2

l=2 and
covariance \sigma 1,2; the other terms are uncorrelated.

The methodology is applied to the results of experiments related to the
performance of sweet orange trees Citrus sinensis (L.) Osbeck, analysed by Ary
A. Salibe, in his Thesis Full Professors ``Effect of rootstock and locality in the
vigor and production of sweet orange trees, Citrus sinensis (L.) Osbeck"". The
experiment consisted of five scions varieties budded on five rootstocks, following
a randomized block design, with six replications. Scions varieties were Hamlin
(H), Baianinha Navel (B), Westin (W), Rubi (R) and Itaborai (I) oranges. The
rootstocks were Rangpur lime Citrus limonia Osbeck (LC), Sunki mandarin Citrus
sunki Hort. ex Tanaka (SU), Caipira sweet orange Citrus sinensis (L.) Osbeck (CA),
trifoliate orange Poncirus trifoliata Rafinesque (TR) and Florida rough lemon Citrus
jambhiri Lushington (RF). The experiments were located in Lageado Experiment
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Station, Botucatu (latitude 22\circ 50' 48"" S, longitude 48\circ 26' 06"" W and altitude
of 786 meters). Yearly, in the period of 1968 to 1974, the orange production was
controlled in kilograms of fruits per tree and measurements of trunk circumference
in centimeter were registered as an indicative of tree vigor.

PROC MODEL in SAS (STATISTICAL ANALYSIS SYSTEM, version 9.3)
for nonlinear functions was used to fit the models to each subject in step 1. The
errors assumptions were verified with Durbin-Watson, Breusch-Pagan and Shapiro-
Wilk tests, for independence, homoscedasticity and normality, respectively. PROC
NLMIXED in SAS was used in step 2, and in step 3 was adapted for multivariate
nonlinear mixed models (Strathe et al., 2010).

3 Results and discussion

In the citrus experiment the subjects were the plants with 5 scions, 5 rootstocks
and 6 replicates; there were N = 150 plants. The age of the trees was measured
in years, xj = 6, 7, 8, 9, 10, 11 years, n = 6. All the plants with Itabora\'{\i} scion
were excluded from the analysis of the orange production (OP) data since the
observations along time do not follow a s-shaped curve; in this case, N = 120
plants. In the steps 1 and 2 there were N = 150 plants for the trunk circumference
(TC) data. In step 3, N = 120 plants were considered for both variables, OP and
TC.

Results for the OP data: In step 1 the logistic model fitted all the 20
combinations cup-rootstock, and Gompertz, 18. The iterative process of adjustment
did not converge in three combinations for von Bertalanffy function, and in other
four combinations the parameter estimates were without biological meaning, with
the asymptotes overestimated. The residual mean square values were 465.49, 512.31
and 625.80 for logistic, Gompertz and von Bertalanffy functions, respectively. In this
step the logistic model had a better fit than Gompertz and von Bertalanffy models,
with the smaller average value of residual mean square, and 100\% of convergence;
asymptote estimates and coefficient of variation in brackets were 297.8 (40), 447.5
(54) and 556.5 (42) in average, for logistic, Gompertz and von Bertalanffy functions,
respectively. The average observed production at 11 years was 197.4 kg. On average
for the three functions, the assumptions for the errors \epsilon ij in (1) were rejected in
nearly 50\% of the cases (significance level = 0.05).

In step 2 the likelihood ratio test showed the best performance of model u123

in comparison with the fixed and other mixed models. For all the logistic models
the p-values for the test of the hypotheses (10), (11) and (12) were lower than
0.0001. For the Gompertz models, the hypothesis H0 : u3 = fixed model was not
tested, once the u3 model is worse than the fixed model; the test for the hypothesis
H0 : u23 = u2 had p-value 0.00288 and for H0 : u123 = u12, 0.25087. For the other
hypotheses, p-values were lower than 0.0001. For the von Bertalanffy model, four
hypotheses were discarded because the alternative model was not as well fitted as the
null model: H0 : u3 = fixed, H0 : u12 = u2, H0 : u13 = u1 and H0 : u13 = u3. The
p-value for testing the hypothesis H0 : u23 = u2 was 0.00035; the other tests showed
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p-values lower than 0.0001. The values of y-variance, 189.88, 384.33 and 440.14, and
corrected Akaike information criterion, 6619.5, 6720.0 and 6737.3, obtained in the
u123 mixed model for logistic, Gompertz and von Bertalanffy models, respectively,
were lower in the logistic in comparison with the other two functions.

Results for the TC data: According to the criteria used here, the models
adjusted to the TC data showed very similar results between themselves. In step
1 the logistic and Gompertz models fitted all the 25 cup-rootstock combinations
and the von Bertalanffy had three cases with asymptote overestimated. The three
functions had similar adjustments, according to the residual mean square criterion;
however the asymptote estimate in logistic (61.5 cm) is nearer from the average
observed trunk circumference value at 11 years, 47.7 cm, in comparison with the
Gompertz (81.6) and von Bertalanffy (70.5) estimates. Except for von Bertalanffy
model u2, that adjusted worse than the fixed model, all hypotheses verified with
the likelihood ratio test resulted in p-values lower than 0.0001 in step 2. Therefore,
the u123 model can be chosen as the best mixed model. The Akaike information
criterion and the y-variance(vy) values for the u123 model are similar in the three
functions. In the OP analysis the y-variance of logistic u123 model was 56\% smaller
than the Gompertz similar model and 57\% smaller than the von Bertalanffy model.
Considering that the logistic mixed u123 model fits better for the OP data, we chose
this model for the subsequent analyses in the step 3.

Step 3. In the bivariate logistic model (13), only the random variables in the
asymptotes related to OP and TC data, u1 1 and u1 2 respectively, were used; other
models with parameters of vector (16) did not converge. The vector \bfittheta in (16) was

\bfittheta i(8\times 1) = (\alpha 1, \beta 1, \gamma 1, \alpha 2, \beta 2, \gamma 2, u1i 1, u1i 2)
\prime 
, (18)

and the covariance matrix \bfitphi in (17) was reduced to

\bfitphi 3\times 3 =

\biggl( 
v11 11

v11 12 v11 22

\biggr) 
. (19)

In this step, TC data were used in millimeters, in order to avoid great
differences between the initial values of the OP and TC \alpha parameters, what can
lead to problems of convergence in the iterative process in SAS. The contrasts were:

Rootstock effect in the asymptote considering each scion,

LC + SU vs. TR = 1(LC) + 1(SU) + 0(CA) - 2(TR) + 0(RF ) (20)

Rootstock effect in the abscissa of the inflection point considering each scion,

LC vs CA = 1(LC) + 0(SU) - 1(CA) + 0(TR) + 0(RF ) (21)

Scion main effect in the asymptote and abscissa of inflection point,

H vs other scions = 3(H) - 1(B) - 1(W ) - 1R (22)

With the significance level alpha = 0.05 it was observed: the rootstock
influence on the asymptote of the logistic model (13), measured by the
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LC + SU  - 2TR contrast, was significant for the OP observations in the cups
H, B, and R and for the TC observations in all the cups. As the contrast estimates
are positive, we conclude that LC and SU rootstocks induced expected superior
limits of fruit yield and trunk circumference higher than the TR rootstock; the
conclusion can be observed in the Figure 1 for the scion Hamlin. The scion effect
on the asymptote, measured by the contrast 3H  - B  - W  - R, is significant and
positive in the average of all rootstocks; the Hamlin (H) growth curves of OP and
TC data had higher asymptote than the other cups B, W and R. This conclusion
can be observed in the Figure 2.
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Figure 1 - Rootstock effects on the asymptote, LC+SU - 2TR, and on the abscissa
of the inflection point, LC  - CA, of the growth curves of trees with
Hamlin (H) cup, fitted to orange production (OP) data. LC: Rangpur
lime; SU: Sunki mandarin; CA: Caipira sweet orange; TR: Trifoliate
orange; RF: Florida rough lemon; a: asymptote; ip: inflection point.
Model (13).

Rootstock effect on the abscissa of the inflection point in model (13), measured
by the contrast LC - CA, is negative and significant for the OP and TC observations
in all the cups H, B, W and R; trees with these cups budded on LC rootstock reached
the inflection point before than trees budded on CA rootstock. This is shown in the
Figure 1. The scion effect on the abscissa of the inflection point, measured by the
contrast 3H  - B  - W  - R for all the rootstocks, is significant and negative for OP
and positive for TC data, ie. Hamlin trees are more precocious in obtaining great
productions when compared with the B, W and R trees, but reach the maximum
point of growth velocity in trunk circumference after the other cups. Figure 2.

The mixed model (13), with corrected Akaike information criterion (AICc)
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Figure 2 - Cup effect, 3H - (B+W+R), on the asymptote and abscissa of inflection
point of the growth curves of trees for the five rootstocks. A: orange
production (OP) data; B: trunk circumference (TC) data; H: Hamlin;
B: Baianinha; W: Westin; R: Rubi; a: asymptote; ip: inflection point.
Model (13).

value of 500888, represented better the population in comparison with the fixed
model, with AICc of 717379; the likelihood ratio test had p-value lower than 0.0001.
Figure 3 presents OP residuals from logistic fixed model (2) and from logistic mixed
bivariate model (13); in the latter, the residuals are smaller and more homogeneous
than in the former. This shows that the residuals in the model (13) are more in
agreement with the assumptions in (1) than the residuals in the fixed model (2).
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Figure 3 - Orange production (OP) residuals from logistic. A: fixed model (2) and
B: mixed bivariate model (13).
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Conclusions

The nonlinear mixed multivariate logistic model with orthogonal contrasts
introduced as covariates can be efficiently used in determining differences between
parameters according to main effects and interactions in factorial experiments. The
multivariate mixed model can contribute more than the univariate model.
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RESUMO: O objetivo desse estudo foi estabelecer contrastes em modelos mistos n\~ao

lineares multivariados para verificar o efeito de tratamentos em experimentos com dados

longitudinais e respostas m\'ultiplas. As fun\c c\~oes n\~ao lineares avaliadas foram log\'{\i}stica,

Gompertz e von Bertalanffy, todas com tr\^es par\^ametros. As vari\'aveis aleat\'orias foram

adicionadas aos par\^ametros ass\'{\i}ntota \alpha , abscissa do ponto de inflex\~ao \beta e o par\^ametro

\gamma . O melhor modelo ajustado foi expandido com covari\'aveis que estabelecem contrastes

ortogonais, de modo a estudar os efeitos principais e intera\c c\~oes em experimentos fatoriais.

A metodologia foi aplicada a dados de um experimento com citros, onde o modelo

log\'{\i}stico de efeitos mistos bivariado foi o melhor ajuste. O modelo escolhido permitiu

compara\c c\~oes entre os tratamentos em um contexto global de mais de uma vari\'avel

dependente e ao longo do per\'{\i}odo de mensura\c c\~ao.

PALAVRAS-CHAVE: Regress\~ao n\~ao linear; modelos assint\'oticos; vari\'aveis dummy;

dados de citros.
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