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ABSTRACT: In survival analysis, multiplicative and additive hazards models provide

the two principal frameworks to study the association between the hazard and covariates.

When these models are considered for analyzing a given survival dataset, it becomes

relevant to evaluate the overall goodness-of-fit and how well each model can predict

those subjects who subsequently will or will not experience the event. In this paper,

this evaluation is based on a graphical representation of the Cox-Snell residuals and

also on a time-dependent version of the area under the receiver operating characteristic

(ROC) curve, denoted by AUC(t). A simulation study is carried out to evaluate the

performance of the AUC(t) as a tool for comparing the predictive accuracy of survival

models. A dataset from the Mayo Clinic trial in primary biliary cirrhosis (PBC) of the

liver is also considered to illustrate the usefulness of these tools to compare survival

models formulated under distinct hazards frameworks.
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1 Introduction

Data involving time to the occurrence of a certain event has been usually
referred to as survival data. A complication in analyzing such data is that they are
usually censored, meaning that the event time of interest is not fully observed on
all subjects under study.

The most well-known regression model proposed for dealing with survival
data is the Cox model (COX, 1972), whose validity relies on the assumption of
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proportional hazards. As this assumption may not always be true (for example,
the effect of a treatment may change over time), alternative models which allow
non-proportional hazards (i.e., time-varying covariate effects) have been proposed.

One of a such model is the Aalen’s additive model (AALEN, 1980, 1989). It
is a flexible nonparametric model whose coefficients are functions of time without
any particular form or dependence on other parameter functions. Since the effect of
some covariates may change with time while the effect of others may not depend on
time, McKeague and Sasieni (1994) have suggested a submodel of the Aalen’s model
named semiparametric additive hazards model. It allows some covariates having
time-varying effect and others do not. For these two models the covariate effects
are modeled on an additive scale and the estimators are given on explicit form.

Other models that can accommodate time-varying covariate effects are a
natural extension of the multiplicative Cox model and its semiparametric version
(given that the flexibility of the extended Cox model may not be needed for all
covariates). For these models, which have been investigated by several authors
(e.g., SCHEIKE, 2002; MARTINUSSEN; SCHEIKE, 2006), the covariate effects
are modeled on a multiplicative scale.

Since for a specific survival dataset it is not clear in advance which of the
models mentioned would be the best, it becomes relevant to assess the goodness-of-
fit and the predictive accuracy for each of them. For that, Abadi et al. (2011) have
noted that there are several statistical challenges. One of them is the impossibility
of using statistical tests such as the likelihood ratio test, score test and Wald test
since the models are not nested (except in special cases). Another is that the
likelihood function is difficult to specify for additive hazards models containing
nonparametric terms, which implies that likelihood based model selection criteria,
such as Akaike’s information criterion (AIC), Bayesian information criterion (BIC)
and Schwarz’s Bayesian criterion (SBC) can not be used in this situation (HUFFER;
McKEAGUE, 1991).

With these statistical challenges in mind, the purpose of this paper was
to consider a time-dependent version of the area under the receiver operating
characteristic (ROC) curve, discussed by Heagerty and Zheng (2005) in the setting
of survival models and denoted by AUC(t), as a procedure to assess the predictive
accuracy of hazards models formulated under distinct frameworks (additive and
multiplicative). The AUC(t) allows both the event status and marker value change
over time. A graphical representation of the Cox-Snell residuals was also considered
for assessing the overall goodness-of-fit of these hazards models.

The paper is organized as follows. In Section 2 we outline the multiplicative
and additive hazards models, as well as the Cox-Snell residuals and the time-
dependent version of the area under the ROC curve for these models. A simulation
study is presented in Section 3 and a lifetime dataset is analyzed in Section 4 to
illustrate the procedures considered for assessing the overall goodness-of-fit and the
predictive accuracy of the models. A discussion ends the paper in Section 5.
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2 Hazards models and related measures

Let Yi denote the time of an event for individual i (i = 1, . . . , n) and define
the observed event time Ti = min(Yi, Ci), where Ci is a censoring time. Thus, when
Ti = Yi, the observed time corresponds to an event (δi = 1), otherwise the event
time is censored at Ci (δi = 0). For a sample of size n, survival data usually contains
the realizations of the random variables {(Ti, δi, Xi1, . . . , Xip)}, i = 1, . . . , n, where
δi is the censoring indicator taking value 1 if an event occurs and 0 otherwise, and
Xi1, . . . , Xip are the covariates.

2.1 Multiplicative hazards models

The multiplicative hazards models assume that the covariate effects act
multiplicatively on some unknown baseline hazard rate. The most well-known
multiplicative model was proposed by Cox (1972), whose validity relies on the
assumption of proportional hazards. It relates covariates to the hazard function
as follows

λ(t | xi) = λ0(t) exp (xT
i β), (1)

where λ0(t) is an unspecified baseline hazard function, β is a vector of regression
coefficients, and xi is a vector of covariates for the i-th individual. Estimation of β
in model (1) is based on a partial likelihood (Cox, 1975).

Since the assumption of proportional hazards may not hold and might also
exist covariates that vary over time, a very flexible extension was proposed for
model (1) to allow both time-varying covariates and time-varying covariate effects
(ZUCKER; KARR, 1990; MARTINUSSEN et al., 2002; CAI; SUN, 2003). For this
extended Cox’s model, the hazard function is expressed as

λ(t | xi(t)) = λ0(t) exp[xT
i (t)β(t)], (2)

where xi(t) = (xi1(t), . . . , xip(t)) is a vector of time-varying covariates for the i-th
individual and β(t) = (β1(t), . . . , βp(t)) is a p-dimensional time-varying regression
coefficients. Despite the notation xi(t), it is worth mentioning that not all covariates
need to be time-dependent (e.g., gender and race). Estimation of β(t) in model (2) is
not straightforward as the estimation of β in model (1). For a such purpose, Zucker
and Karr (1990) have studied a penalized partial likelihood approach while Murphy
and Sen (1991) a sieve approach. Martinussen et al. (2002) have also proposed

one-step estimation of the cumulative parameter function Bk(t) =
∫ t

0
βk(u)du. More

recently, a global partial likelihood method was proposed by Chen et al. (2012).
Given that the flexibility of the extended Cox model may not be needed for

all covariates, it was proposed a submodel of model (2) which allow some covariates
with time-varying effect and others do not. The hazard function of this submodel
is expressed as

λ(t | xi(t), zi(t)) = λ0(t) exp[xT
i (t)β(t) + zTi (t)γ], (3)
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where xi(t) and zi(t) are covariate vectors of dimensions p and q, respectively, β(t)
is a p-dimensional regression functions and γ is a q-dimensional regression vector.
Similar to model (2), some or all covariates of xi(t) and zi(t) may do not change
over time or can be assumed to be fixed at the start of the study. A procedure for
estimating the components of β(t) and γ has been proposed by Martinussen et al.
(2002) who also have derived the asymptotic distribution of the estimators.

2.2 Additive hazards models

An alternative framework in modeling hazard functions is the additive models.
For them, the hazard of a covariate is an additive increment on the baseline hazard.
The most known nonparametric additive hazards model was proposed by Aalen
(1980, 1989). A submodel of the Aalen’s model has subsequently been proposed by
McKeague and Sasieni (1994) to allow some covariates with time-varying effect and
others do not. The hazard functions of these models have, respectively, the form

λ(t | xi(t)) = λ0(t) + xT
i (t)β(t) (4)

and λ(t | xi(t), zi(t)) = λ0(t) + xT
i (t)β(t) + zTi (t)γ, (5)

where xi(t), zi(t), β(t) and γ are defined as in models (2) and (3).

Model (4) is referred to as nonparametric because no assumption is made about
the functional forms of β(t). Estimation of β(t) is based on a least-squares technique
(HUFFER; McKEAGUE, 1991) and since direct estimation of βk(t) is difficult, it

is usual to estimate the cumulative regression functions Bk(t) =
∫ t

0
β(u)du, k =

1, . . . , p. A crude estimate of βk(t) is given by the slope of the estimate of Bk(t).
However, better estimates can be obtained by using kernel smoothing methods
(HASTIE et al., 2009). For model (5), estimation of β(t) and γ is also based on a
least-squares technique and kernel smoother (McKEAGUE; SASIENI, 1994).

Although models (2) to (5) allow time-varying covariate effects, it is worth
mentioning that the estimation is restricted to a time interval (0, τ ] where τ is the
maximum time t at which the design matrix X(t) is non-singular.

2.3 Overall goodness-of-fit and predictive accuracy of the models

When one of the mentioned hazards models is considered to analyze a survival
dataset, it is important to evaluate whether it actually fits the data. For model (1)
several graphical and numerical methods based on different residuals (Schoenfeld,
Cox-Snell, martingale and deviance residuals) have been proposed for judging
its goodness-of-fit (COX; SNELL, 1968; SCHOENFELD, 1982; LIN et al., 1993;
GRAMBSCH; THERNEAU, 1994). For models (2) to (5), some techniques based on
martingale and cumulative martingale residuals have also been proposed to validate
the fit of them (MARTINUSSEN; SCHEIKE, 2006).
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In order to evaluate the overall goodness-of-fit of the hazards models described
previously, we have focused in this paper on a graphical representation of the Cox-
Snell residuals ei, i = 1, . . . , n, defined for models (1) to (5) as

ei =



Λ̂0(ti) exp(xT
i β̂) model (1)∫ ti

0
λ̂0(s) exp[xT

i (s)β̂(s)]ds model (2)∫ ti
0
λ̂0(s) exp[xT

i (s)β̂(s) + zTi (s)γ̂]ds model (3)∫ ti
0

[β̂0(s) + xT
i (s)β̂(s)]ds model (4)∫ ti

0
[β̂0(s) + xT

i (s)β̂(s) + zTi (s)γ̂]ds model (5),

where Λ̂0(t) is the estimated cumulative baseline hazard function. If the model fits
the data well, a plot of the Cox-Snell residuals ei against the estimated cumulative
hazard rate of ei, denoted by Λ̂(ei), should be roughly a straight line through the
origin with slope 1 (LAWLESS, 2002).

Another issue that is important to taken into account when hazards models
under different frameworks are considered to analyze a survival dataset is which
one has the best predictive acuracy. Considering the comparison of models, Torner
(2004) has fitted the standard Cox’s model (1) and the Aalen’s model (4) to breast
cancer data and then performed an informal comparison between them. A similar
comparison between models (1) and (4) has also been made by Cao (2005) using
laryngeal cancer data and by Abadi et al. (2011) using breast cancer data. The
conclusion was that the two models give different pieces of information and should
be viewed as complementary methods.

Since only an informal comparison of models has been made by the mentioned
authors, would be useful to consider a measure that make feasible to evaluate the
predictive accuracy of hazards models formulated under additive or multiplicative
frameworks. In this paper, the time-dependent version of the area under the ROC
curve was considered for this purpose. To obtain a such area, let δi(t) be the event
status at time t, taking values 1 or 0, and Mi(t), i = 1, . . . , n, a longitudinal marker
used as a prediction of failure at time t. This marker may also denote a risk score
computed from a regression or some other model. As usual, it will be assumed that
a higher marker value is more indicative of an event. Hence, for a given threshold c,
the time-dependent sensitivity and specificity can be defined respectively by{

Se(c, t) = P (Mi(t) > c | δi(t) = 1)

Sp(c, t) = P (Mi(t) ≤ c | δi(t) = 0).

Since sensitivity and specificity are time-dependent functions, we can define
the corresponding ROC curve for any fixed time t as ROC(t) which plots 1−Sp(c, t)
against Se(c, t) for thresholds c. The time-dependent AUC is then defined as

AUC(t) =

∫ ∞
−∞

Se(c, t)d[1− Sp(c, t)]

310 Rev. Bras. Biom., Lavras, v.37, n.3, p.306-323, 2019 - doi: 10.28951/rbb.v37i3.391



where [1− Sp(c, t)] = ∂[1−Sp(c,t)
∂c dc.

Several methods have been proposed for estimating the time-dependent ROC
curve for censored event times (BLANCHE et al., 2013; SHEN et al., 2015, amongst
others). Recently, Kamarudin et al. (2017) presented a review of the current
methods which use single or longitudinal marker measurements. In this paper, the
cumulative/dynamic (C/D) definition given by Heagerty and Zheng (2000), which
has commonly been used in clinical applications, was considered for estimating the
time-dependent sensitivity and specificity. For C/D definition, a case is defined as
any individual experiencing the event between t = 0 and time t and a control as an
individual remaining event-free at time t. Hence, each individual may be a control
at the earlier time (when the event time is greater than the target time, i.e. Ti > t)
but then contributes as a case for later times (when the event time is less than or
equal to the target time, i.e. Ti ≤ t).

Thus, the cumulative sensitivity at time t (which corresponds to the proba-
bility that an individual has a marker value greater than c among the individuals
who experienced the event before time t), the dynamic specificity at time t (which
corresponds to the probability that an individual has a marker value less than or
equal to c among those event-free individuals beyond time t), and the AUC(t),
corresponding to the probability of an individual who experienced the event having
a higher marker value than a healthy individual, can be defined as

Se(c, t) = P (Mi(t) > c | Ti ≤ t)
Sp(c, t) = P (Mi(t) ≤ c | Ti > t)

AUC(t) = P (Mi(t) > Mj(t) | Ti ≤ t, Tj > t), i 6= j.

Since the values of Se(c, t) and Sp(c, t) fall in the interval [0,1], the marker
Mi(t), i = 1, . . . , n, will be perfect at discriminating between failure and censorship
when both take the value 1. Consequently, the AUC(t) can be used to characterize
the ability of the marker to perform this discrimination over time. The closest is
the AUC(t) of 1, better is the discriminating ability of the marker at time t.

In order to consider the predictive accuracy of the Cox model (1) using the
AUC(t) in the case where the proportional hazards assumption holds, Heagerty and
Zheng (2005) have proposed the linear predictor xT

i β as the model score Mi(t), i =
1, . . . , n. Nevertheless, if the proportional hazards is violated, the score they have
proposed was Mi(t) = xT

i β(t), given that a more general model such as model (2)
would be more appropriate in this case.

Based on the Heagerty and Zheng proposal, the scores Mi(t), i = 1, . . . , n,
proposed in this paper to assess the predictive accuracy at time t of models (1) to
(5) by means of the AUC(t) are given as follows

Mi(t) =


xT
i β model (1)

xT
i (t)B(t) models (2) and (4)

xT
i (t)B(t) + zTi (t)γ t models (3) and (5),
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where β = (β1, . . . , βp), B(t) = (B1(t), . . . , Bp(t)), with Bk(t) =
∫ t

0
βk(u)du for

k = 1, . . . , p, and γ = (γ1, . . . , γq).
For each specified time t, the nearest neighbor estimation (NNE) method

(AKRITAS, 1994; HEAGERTY et al., 2000) was used to estimate the ROC curve
and its corresponding AUC(t). The survivalROC package for the R software (R
CORE TEAM, 2017) helped in this estimation process, and the survival and timereg
packages in the estimation of the parameters β, γ, and B(t) of models (1) to (5).

3 Simulation study

A simulation study was carried out in order to evaluate the AUC(t) as a tool
to compare multiplicative and addditive survival models relative to their predictive
accuracy. For this study, we have generated survival times Ti (i = 1, . . . , n) from
the accelerated failure time model (LAWLESS, 2002) considering the Weibull and
a continuous covariate X1 with time-invariant effect, as well as the lognormal and a
continuous covariate X1 with time-varying effect, like those shown in Figure 1. The
covariate values (x1i, i = 1, . . . , n) were generated from an exponential distribution.
The sample sizes considered were n = 100, 300 and 500 with 0%, 20% and 40%
of right censoring. Readers interested in survival data-generating processes can see
Austin (2012) and Bender et al. (2005), amongst others.
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Figure 1 - (a) Covariate X1 with time-invariant effect and (b) with time-varying effect.

Based on 1,000 simulation runs for each combination of n and percentage
of censorship, the mean AUC and its corresponding standard error were obtained
at several times t for each model. Table 1 shows the simulation results for those
scenarios where the continuous covariate X1 was considered in the data-generating
process with time-invariant effect (the maximum time ranged from 6 to 8).

From Table 1, it can be noted that the models presented similar AUC(t) values,
as well as that for the extended Cox and Aalen models it was not possible to obtain
AUC(t) for t ≥ 4.5 when n = 100 and t ≥ 5 when n = 300 and 500. This is
due to the estimation procedure for these models to be possible only while the
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design matrix X(t) is non-singular. Other facts that can be observed from Table 1
are: i) the standard errors decreased as the sample size increased; ii) the standard
errors increased as the percentage of censorship increased; iii) the AUC(t) values
decreased as time increased (which is expected due to the reduction of subjects at
risk over time); and iv) a more pronounced decrease in the AUC(t) values over time
was recorded for those scenarios with 20% and 40% of censorship than for those
with no censorship. Thus, regarding the predictive accuracy of the models, the
simulation results indicated that there is no substantial gain in adjusting models
with time-varying covariate effects when the effects are time-invariant.

Table 1 - AUC(t) and standard error (s.e.) associated with the Cox, Extended Cox (ECox) and
Aalen models for several scenarios where X1 is continuous with time-invariant effect

t = 2.0 t = 3.0 t = 3.5 t = 4.0 t = 4.5 t = 5.0
% n Model AUC s.e. AUC s.e. AUC s.e. AUC s.e. AUC s.e. AUC s.e.

100 Cox 0.955 0.020 0.946 0.022 0.944 0.023 0.940 0.026 0.933 0.027 0.934 0.033
100 ECox 0.956 0.017 0.948 0.020 0.945 0.023 0.941 0.028 – – – –
100 Aalen 0.956 0.016 0.947 0.017 0.946 0.017 0.942 0.022 – – – –
300 Cox 0.957 0.017 0.948 0.018 0.944 0.018 0.941 0.020 0.941 0.020 0.939 0.022

0 300 ECox 0.957 0.013 0.949 0.016 0.944 0.016 0.942 0.018 0.942 0.019 – –
300 Aalen 0.958 0.008 0.950 0.011 0.946 0.011 0.943 0.013 0.942 0.013 – –
500 Cox 0.959 0.013 0.948 0.013 0.949 0.013 0.947 0.016 0.945 0.017 0.939 0.020
500 ECox 0.960 0.011 0.949 0.012 0.949 0.013 0.948 0.014 0.946 0.016 – –
500 Aalen 0.961 0.006 0.951 0.008 0.949 0.008 0.949 0.010 0.947 0.012 – –
100 Cox 0.936 0.027 0.904 0.039 0.883 0.049 0.855 0.062 0.820 0.083 0.774 0.104
100 ECox 0.936 0.027 0.903 0.040 0.882 0.049 0.854 0.062 – – – –
100 Aalen 0.938 0.030 0.885 0.049 0.842 0.097 0.796 0.065 – – – –
300 Cox 0.938 0.020 0.917 0.024 0.904 0.028 0.886 0.038 0.860 0.053 0.815 0.085

20 300 ECox 0.937 0.020 0.915 0.025 0.901 0.029 0.879 0.042 0.849 0.064 – –
300 Aalen 0.932 0.021 0.907 0.026 0.891 0.035 0.867 0.052 0.828 0.088 – –
500 Cox 0.938 0.019 0.918 0.021 0.906 0.025 0.887 0.031 0.859 0.051 0.815 0.070
500 ECox 0.937 0.017 0.917 0.019 0.902 0.023 0.885 0.029 0.858 0.045 – –
500 Aalen 0.932 0.016 0.912 0.019 0.899 0.023 0.883 0.031 0.856 0.049 – –
100 Cox 0.905 0.039 0.852 0.058 0.818 0.071 0.779 0.081 0.734 0.094 0.686 0.109
100 ECox 0.905 0.039 0.851 0.058 0.818 0.071 0.779 0.081 – – – –
100 Aalen 0.887 0.041 0.809 0.070 0.754 0.101 0.706 0.092 – – – –
300 Cox 0.914 0.024 0.872 0.034 0.844 0.039 0.807 0.051 0.763 0.066 0.707 0.081

40 300 ECox 0.914 0.024 0.872 0.033 0.844 0.039 0.806 0.051 0.764 0.065 – –
300 Aalen 0.908 0.025 0.861 0.037 0.827 0.049 0.783 0.068 0.728 0.091 – –
500 Cox 0.914 0.021 0.876 0.029 0.852 0.035 0.817 0.044 0.770 0.063 0.713 0.075
500 ECox 0.914 0.021 0.876 0.029 0.852 0.035 0.817 0.045 0.770 0.062 – –
500 Aalen 0.913 0.020 0.872 0.028 0.845 0.038 0.808 0.045 0.760 0.065 – –

Note: % denotes the percentage of censorship and n the sample size.

Table 2 displays the simulation results for those scenarios where a continuous
covariate with time-varying effect was considered in the data-generating process
(maximum time ranged from 20 to 23). The AUC(t) values for the dynamic models
(extended Cox and Aalen models) were restricted to time t ∈ (0, τ ], with τ = 13
for n = 100, and τ = 15 for n = 300 and 500, respectively. From Table 2, one
can observe higher values of AUC(t) associated with the dynamic models as time
increases, showing higher predictive accuracy of these models in relation to the Cox
model. As expected, the standard errors decreased as the sample size increased
and increased as the percentage of censorship increased. In addition, scenarios with
20% and 40% of censorship, when compared with those without censorship, showed
a more pronounced decrease in the AUC(t) values over time. Thus, if the covariate
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has a time-varying effect, the simulation results indicated that the dynamic models,
when compared to the Cox model, exhibit higher predictive accuracy.

Table 2 - AUC(t) and standard error (s.e.) associated with the Cox, Extended Cox (ECox) and
Aalen models for several scenarios where X1 is continuous with time-varying effect

t = 2.0 t = 5.0 t = 7.0 t = 10.0 t = 13.0 t = 15.0
% n Model AUC s.e. AUC s.e. AUC s.e. AUC s.e. AUC s.e. AUC s.e.

100 Cox 0.981 0.006 0.960 0.011 0.942 0.017 0.915 0.024 0.908 0.043 0.904 0.052
100 ECox 0.990 0.006 0.974 0.012 0.963 0.020 0.934 0.026 0.939 0.038 – –
100 Aalen 0.991 0.005 0.978 0.012 0.962 0.019 0.935 0.024 0.935 0.037 – –
300 Cox 0.982 0.004 0.965 0.009 0.954 0.011 0.919 0.016 0.922 0.022 0.915 0.023

0 300 ECox 0.992 0.003 0.983 0.009 0.964 0.010 0.931 0.015 0.943 0.022 0.939 0.024
300 Aalen 0.991 0.003 0.986 0.008 0.963 0.010 0.931 0.014 0.944 0.023 0.932 0.026
500 Cox 0.983 0.002 0.970 0.007 0.958 0.008 0.920 0.013 0.926 0.017 0.917 0.021
500 ECox 0.991 0.002 0.981 0.007 0.965 0.006 0.948 0.012 0.946 0.016 0.938 0.021
500 Aalen 0.992 0.002 0.985 0.007 0.964 0.009 0.947 0.012 0.946 0.016 0.937 0.021
100 Cox 0.968 0.015 0.956 0.021 0.931 0.029 0.864 0.052 0.811 0.056 0.760 0.064
100 ECox 0.969 0.013 0.966 0.020 0.942 0.027 0.889 0.048 0.839 0.064 – –
100 Aalen 0.968 0.016 0.969 0.024 0.942 0.028 0.888 0.046 0.838 0.050 – –
300 Cox 0.969 0.010 0.957 0.015 0.929 0.018 0.878 0.028 0.824 0.040 0.768 0.058

20 300 ECox 0.975 0.011 0.969 0.013 0.937 0.014 0.898 0.021 0.844 0.041 0.807 0.051
300 Aalen 0.976 0.012 0.970 0.015 0.940 0.015 0.899 0.022 0.842 0.031 0.811 0.048
500 Cox 0.970 0.007 0.957 0.011 0.942 0.013 0.878 0.021 0.826 0.030 0.804 0.043
500 ECox 0.975 0.007 0.970 0.010 0.950 0.011 0.893 0.013 0.854 0.028 0.823 0.042
500 Aalen 0.979 0.006 0.968 0.010 0.955 0.012 0.892 0.012 0.857 0.023 0.827 0.040
100 Cox 0.959 0.025 0.906 0.038 0.860 0.046 0.772 0.060 0.656 0.078 0.591 0.091
100 ECox 0.967 0.024 0.920 0.036 0.871 0.045 0.792 0.059 0.692 0.076 – –
100 Aalen 0.967 0.022 0.920 0.036 0.871 0.046 0.793 0.062 0.693 0.078 – –
300 Cox 0.957 0.014 0.911 0.021 0.882 0.024 0.805 0.033 0.705 0.043 0.665 0.054

40 300 ECox 0.969 0.014 0.927 0.021 0.898 0.024 0.836 0.033 0.736 0.051 0.703 0.061
300 Aalen 0.968 0.013 0.928 0.020 0.895 0.024 0.837 0.034 0.740 0.055 0.706 0.060
500 Cox 0.958 0.010 0.918 0.015 0.885 0.019 0.814 0.027 0.711 0.035 0.676 0.045
500 ECox 0.971 0.011 0.939 0.015 0.896 0.019 0.830 0.027 0.752 0.035 0.723 0.054
500 Aalen 0.974 0.009 0.935 0.015 0.899 0.018 0.839 0.028 0.762 0.031 0.726 0.053

Note: % denotes the percentage of censorship and n the sample size.

Simulations were also carried out considering the covariate X1 as dichotomous
(with time-invariant effect and time-varying effect). From the results (not shown), it
was possible to obtain the same conclusions presented for X1 continuous. However,
although the AUC(t) values for X1 dichotomous have presented the same behavior
observed for X1 continuous, the magnitude of the AUC(t) values was somewhat
lower for X1 considered as dichotomous rather than continuous (probably because
dichotomous covariates are usually less informative than continuous ones).

In the next section, the standard Cox model and the dynamic survival models
mentioned in this paper are considered for analysing the PBC data. The main
purpose of this analysis is to illustrate the results obtained in the simulation study
by means of a real situation which has several covariates.

4 Illustration

The standard Cox model and all other hazards models mentioned in this paper
were considered for analysing the PBC data (FLEMING; HARRINGTON, 1991).
This dataset refers to a study conducted at the Mayo Clinic between 1974 and
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1984 which involved 418 patients diagnosed with primary biliary cirrhosis (PBC)
of the liver. They were followed until death or censoring. In addition to time
at risk (in years) and censoring indicator, five covariates were considered in the
analysis: age (in years), edema (present or absent), serum albumin (g/dl), serum
bilirubin (mg/dl) and prothrombin time (in seconds). A summary of them is shown
in Table 3. The last three covariates were used on the logarithmic scale and all
continuous covariates were centered around their respective averages. At the end
of the study it was recorded around 55% of censorship.

Table 3 - Covariates considered in the analysis of the PBC dataset

Covariates Summary

Age 26 to 78 year (mean = 51; s.d. = 10.47)
Edema 352 absent (85%)
Serum bilirubin 0.3 to 28 mg/dl (mean = 3.2; s.d. = 4.38)
Serum albumin 1.96 to 4.64 mg/dl (mean = 3.5; s.d. = 0.42)
Prothrombin time 9 to 18 seconds (mean = 10.73; s.d. = 1.02)

Initially, models (1), (2) and (4) were fitted including all covariates. Next,
graphical methods (not shown) and tests were carried out to assess the significance
of the covariate effects (that is, to test the null hypothesis H01:βk(t) = 0), as well as
the validity of the proportional hazards assumption, H02:βk(t) = βk, k = 1, . . . , 5.
Wald test and a test based on Schoenfeld residuals were used, respectively, to test the
null hypotheses for the Cox model while supremum tests by Martinussen and Scheike
(2006) were used for the other two models. Estimation for models with time-varying
covariate effects was restricted to the time interval (0, 8.1], since τ = 8.1 was the
maximum time at which the design matrix X(t) was non-singular.

From the p-values displayed in Table 4 related to the tests performed, it can be
seen that all covariates showed significant effect and that the proportional hazards
assumption was not satisfied for two covariates: edema and log(prothrombin). Thus,
models (3) and (5) were fitted since some covariates have revealed significant time-
varying effect and others do not.

Table 4 - P-values from tests used to assess the significance of the covariate effects
(H∗01:βk = 0 or H01:βk(t) = 0) and the proportionality (H02:βk(t) = βk)

Standard Extended
Cox model Cox model Aalen model

Covariates H∗01 H02 H01 H02 H01 H02

age 0.001 0.374 0.001 0.612 0.080 0.970
edema 0.008 0.038 0.002 < 0.001 0.009 < 0.001
log(albumin) < 0.001 0.277 < 0.001 0.921 0.002 0.959
log(bilirubin) < 0.001 0.218 < 0.001 0.740 < 0.001 0.272
log(prothrombin) 0.013 < 0.001 < 0.001 0.002 0.008 0.001
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In order to evaluate the predictive accuracy of models (1), (3) and (5), the
AUC(t) was calculated at several times. Bootstrap resampling (EFRON, 1982) was
considered for assessing the standard errors of the AUC(t). The results are shown in
Table 5 and depicted in Figure 2(a). The decrease observed in the AUC(t) estimates
is expected since there is a gradual decrease in the set of subjects at risk over time.

From Table 5 and Figure 2(a), it can be noted that models (3) and (5) showed
better predictive accuracy than the Cox model (1). This result is consistent with
what was expected since the proportional hazards assumption was not satisfied for
two of the five covariates in the models. In addition, it can be noted that models (3)
and (5) provided similar predictive accuracy over time. It shows that even belonging
to distinct frameworks (model (3) is multiplicative and model (5) is additive), these
two models have provided very close prediction of those subjects who will or will
not experience the event at time t.

Table 5 - AUC(t) estimates and respective standard errors

Model (1) Model (3) Model (5)
Standard Cox Multiplicative Additive

AUC(t) NNE (s.e.) NNE (s.e.) NNE (s.e.)
t = 0.5 0.924 (0.031) 0.919 (0.035) 0.932 (0.028)
t = 1.5 0.851 (0.038) 0.883 (0.029) 0.883 (0.031)
t = 3.0 0.848 (0.022) 0.870 (0.021) 0.871 (0.021)
t = 5.0 0.841 (0.023) 0.875 (0.019) 0.872 (0.018)
t = 7.0 0.818 (0.023) 0.857 (0.027) 0.843 (0.020)
t = 8.0 0.792 (0.027) 0.819 (0.034) 0.828 (0.025)

Next, to assess and compare the overall goodness-of-fit of models (1), (3) and

(5), the Cox-Snell residuals ei against the cumulative hazard rate Λ̂(ei) were plotted
in Figure 2(b). Inspection of the curves depicted in this figure suggests the models
with time-varying covariate effects (models (3) and (5)) as those fitting best the
data. Hence, it could be reasonable to consider these two models instead of choosing
one in order to obtain complementary information from each other since the additive
model provides information on the risk in absolute terms while the multiplicative
model in relative terms. Anyway, to choose a model under a particular framework,
it can be advisable to taken into account the objectives of the study, facilities of
estimation and interpretation, sample size, number of subjects at risk at time t,
percentage of censorship, and amount of covariates of interest, amongst others.

5 Discussion

The additive and multiplicative hazards models postulate distinct relationships
between the hazard and covariates. Often, it is unclear which of these models should
be preferred in a specific application. The additive Aalen’s model can naturally
model changing covariate effects. However, estimation of the regression functions
in this model is only applicable while the design matrix X(t) is non-singular.
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Figure 2 - (a) Time t against AUC(t) and (b) Cox-Snell residuals ei against the

estimated cumulative hazard rate Λ̂(ei) for models (1), (3) and (5).

As mentioned by Zhang and Akcin (2012), this requirement has undesirable
consequences, particularly when there are many covariates in the sample. For
instance, from at a specific time t of the study period, the reduced set of subjects at
risk may not yield a design matrix with full rank. Hence, the regression functions
are inestimable even though the failures are still observed. In addition, for small to
medium sized data the Aalen’s model and the extended Cox model with all covariate
effects being time-varying may further be difficult to fit. Hence, Martinussen and
Scheike (2006) suggest that semiparametric models can provide a more reasonable
compromise between model complexity and size of the data.

Parameter estimation in hazards models with time-varying covariate effects is
more complex than in the Cox model, being highly impacted due to the sample
size, number of subjects at risk at time t, and percentage of censorship. Thus,
although these models are flexible for allowing covariates with time-varying effect,
the estimation procedures commonly used to estimate a such effect are restricted to
a time t usually smaller than the maximum time observed in the data set, making the
mentioned flexibility less favorable in practice than would be expected. However,
even when the models with time-varying covariate effects provide themselves as
viable options, it is important to point out the relevance of evaluating how serious
is the violation of the proportional hazards assumption. If such violation is not too
serious, it may be more appropriate models with no time-varying covariate effects.

From the Mayo PBC data analysis, in which the AUC(t) was considered as
a procedure for helping us in the comparison of hazards models under distinct
frameworks, it was possible to observe that all models have provided similar results
regarding covariates selected to remain in the final model. All models have also
indicated the same set of covariates with time-varying effect. As expected in this
case, the AUC(t) showed better predictive accuracy associated with the models that
allow some covariates with time-varying effect and others do not. The AUC(t) has
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also indicated that hazards models under distinct frameworks can provide similar
predictive accuracy. This result is consistent with the conclusion provided by some
authors (TORNER, 2004; CAO, 2005; ABADI et al., 2011) that multiplicative
and additive hazards models should be seen as complementary methods that can
together provide a fuller understanding of the data.

From all that was presented and discussed, the graphical representation based
on the Cox-Snell residuals together with the time-dependent version of the area
under the ROC curve, AUC(t), seem to be useful procedures that can help us
to compare hazards models formulated under distinct frameworks regarding to
their overall goodness-of-fit and predictive accuracy. Drawing a parallel with other
measures, such as the Akaike’s information criterion (AIC), the AUC(t) could be
viewed as a measure that can help us to compare models that are or not nested, as
well as to compare nonparametric, semiparametric and parametric hazards models
amongst them in order to assist us in choosing those that best fit the data.
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RAMINELLI, J. A.; GIOLO, S. R. Modelos de sobrevivência no contexto de riscos
multiplicativos e aditivos. Rev. Bras. Biom., Lavras, v.37, n.3, p.306-323, 2019.

RESUMO: Em análise de sobrevivência, os modelos de riscos multiplicativos e aditivos

fornecem as duas principais abordagens para estudar a associação entre o risco e as

covariáveis. Quando esses modelos são considerados para analisar certo conjunto de

dados de sobrevivência, torna-se importante avaliar a qualidade de ajuste dos modelos

e o quão bem cada um deles pode predizer aqueles indiv́ıduos que subsequentemente

irão ou não experimentar o evento. Nesse artigo, essa avaliação é feita com base em

uma representação gráfica dos reśıduos de Cox-Snell e, também, em um versão tempo-

dependente da área sob a curva ROC (receiver operating characteristic), denotada por

AUC(t). Um estudo de simulação é realizado para avaliar a performance da AUC(t)

como uma ferramenta de comparação do poder preditivo de modelos de sobrevivência.

Um conjunto de dados da Mayo Clinic sobre cirrose biliar primária (PBC) do f́ıgado

é considerado a fim de ilustrar a utilidade dessas ferramentas para a comparação de

modelos de sobrevivência formulados sob estruturas de riscos distintas.

PALAVRAS-CHAVE: Comparação de modelos; ROC; tempos de vida; poder preditivo.
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APPENDIX A - R commands used to obtain the AUC(t)

require(timereg); require(survivalROC)

data(pbc); attach(pbc); i<-order(pbc[,2])

pbc1<-pbc[i,]

detach(pbc); attach(pbc1)

dat1<-as.data.frame(cbind(age, albumin, bili, edema, protime, time, status))

pbc2<-na.omit(dat1); dim(pbc2)

detach(pbc1); attach(pbc2)

agec<-age - mean(age) # age centered on its mean

logalbum<-log(albumin) - mean(log(albumin)) # logalbum centered on its mean

logbili<-log(bili) - mean(log(bili)) # logbili centered on its mean

logprotime<-log(protime) - mean(log(protime)) # logprotime centered on its mean

Status<-ifelse(status==0, 0, 1) # censor indicator

Edema<-ifelse(edema==0, 0, 1) # edema in two categories

tempo<-time/365 # time in years

pbc3<-as.data.frame(cbind(agec,logalbum,logbili,Edema,logprotime,tempo,Status))

detach(pbc2); attach(pbc3); n1<-dim(pbc3)[1]

set.seed(157); ei<-rnorm(n1,0,0.001); tempos<- tempo + ei; pbc3$tempos<-tempos

### MODEL (1) -> Cox model ###

mod1<-coxph(Surv(tempos,Status)~agec+logalbum+logbili+Edema+logprotime,

method="breslow",data=pbc3)

pi_cox<-mod1$linear.predictor # marker

cut<-c(0.5,1.5,3,5,7,8,9,11,12) # times chosen for obtaining AUC

AUC<-matrix(0,9,2)

for(i in 1:9){

cutoff <- cut[i]

ic.1= survivalROC(Stime=pbc3$tempos, status=pbc3$Status,

marker = pi_cox,

predict.time = cutoff, method="NNE", lambda=0.03)

AUC[i,1]<-cut[i]; AUC[i,2]<-ic.1$AUC

}

colnames(AUC)<-c("t","AUC(t)"); AUC

### MODEL (3) -> Multiplicative semiparametric ###

mod2.1<- timecox(Surv(tempos,Status) ~ const(agec) + const(logalbum) +

const(logbili) + Edema + logprotime, residuals=1, max.time=8, data=pbc3)

cut<-c(0.5,1.5,3,5,7,8) # times chosen for obtaining AUC

AUC<-matrix(0,6,2)

for(i in 1:6){

cutoff<-cut[i]

t1<-max(subset(mod2.1$cum[-1,1],mod2.1$cum[-1,1]<=cutoff))

BV<-as.matrix(mod2.1$cum[,3:4][mod2.1$cum[,1]==t1])

BF<-(mod2.1$gamma)*cutoff

B1<-as.matrix(rbind(BF,BV))

X<-as.matrix(pbc3[,1:5])

pi_cd<- X%*%B1 # marker at t = cut[i]
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ic.1= survivalROC(Stime=pbc3$tempos, status=pbc3$Status,

marker = pi_cd,

predict.time = cutoff, method="NNE", lambda=0.03)

AUC[i,1]<-cut[i]; AUC[i,2]<-ic.1$AUC

}

colnames(AUC)<-c("t","AUC(t)"); AUC

### MODEL (5) -> Additive semiparametric ###

mod3.1<- aalen(Surv(tempos, Status) ~ const(agec) + const(logalbum) +

const(logbili) + Edema + logprotime, max.time=8, data=pbc3)

cut<-c(0.5,1.5,3,5,7,8) # times chosen for obtaining AUC

AUC<-matrix(0,6,2)

for(i in 1:6){

cutoff<-cut[i]

t1<-max(subset(mod3.1$cum[-1,1],mod3.1$cum[-1,1]<=cutoff))

BV<-as.matrix(mod3.1$cum[,3:4][mod3.1$cum[,1]==t1])

BF<-(mod3.1$gamma)*cutoff

B1<-as.matrix(rbind(BF,BV))

X<-as.matrix(pbc3[,1:5])

pi_A<- X%*%B1 # market at t = cut[i]

ic.1= survivalROC(Stime=pbc3$tempos, status=pbc3$Status,

marker = pi_A,

predict.time = cutoff, method="NNE", lambda=0.003)

AUC[i,1]<-cut[i]; AUC[i,2]<-ic.1$AUC

}

colnames(AUC)<-c("t","AUC(t)"); AUC

### Cox-Snell residuals -> model (1) ###

mod1<-coxph(Surv(tempos,Status)~agec+logalbum+logbili+Edema+logprotime,

method="breslow",data=pbc3)

n<- dim(pbc3)[1]; delta <- pbc3$Status

rm<-resid(mod1, type="martingale") # martingal residuals

rcs1 <- delta - rm # Cox-Snell residuals

### Cox-Snell residuals -> model (3) ###

mod2.1<-timecox(Surv(tempos, Status)~const(agec) + const(logalbum) +

const(logbili) + Edema + logprotime, residuals=1,data=pbc3)

n<-dim(pbc3)[1]

rm<-matrix(0,n,1) # martingal residuals

for(i in 1:n){

rm[i]<-sum(mod2.1$residuals$dM[,i])

}

delta<-pbc3$Status

ei<-delta-rm # Cox-Snell residuals
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