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ABSTRACT: The machine learning area has recently gained prominence and artificial

neural networks are among the most popular techniques in this field. Such techniques

have the learning capacity that occurs during an iterative process of model fitting.

Multilayer perceptron (MLP) is one of the first networks that emerged and, for this

architecture, backpropagation and its modifications are widely used learning algorithms.

In this article, the learning of the MLP neural network was approached from the Bayesian

perspective by using Monte Carlo via Markov Chains (MCMC) simulations. The MLP

architecture consists of the input, hidden and output layers. In the structure, there are

several weights that connect each neuron in each layer. The input layer is composed

of the covariates of the model. In the hidden layer there are activation functions. In

the output layer, there are the result which is compared with the observed value and

the loss function is calculated. We analyzed the network learning through simulated

data of known weights in order to understand the estimation by the Bayesian method.

Subsequently, we predicted the price of WTI oil and obtained a credibility interval for the

forecasts. We provide an R implementation and the datasets as supplementary materials.
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1 Introduction

Artificial Neural Networks (ANNs) are popular machine learning techniques
that simulate the learning mechanism of biological organisms. The ANN calculates
the input functions and propagates the values obtained towards the output neurons.
The neural network consists of the input, hidden and output layers, each contains
neurons. In the first layer, neurons correspond to covariates, which are weighted
and summarized in each neuron in the hidden layer, where there is an activation
function. This result is weighted and summarized in the output layer.

The resulting value is compared with the observed value, then we have the
loss function which is used by the optimization algorithms in order to search for the
smallest error. The learning process occurs by changing the weights that connect
neurons, thus the model error is reduced.

The perceptron is the simplest neural network architecture and consists of
input variables directly related to the output layer. When there are intermediate
layers, we have the so called multilayer perceptron neural network, which is the
main focus of this article.

After learning the network weights, it is possible to generalize the knowledge
obtained in the training data to unobserved data (AGGARWAL, 2018). Several
ANN models have been developed with variations in the learning process and
network architecture, each has its own training algorithm (MÓDULO, 2016).

There are many learning methods for neural networks. Any method of non-
linear optimization, whether local or global, can be applied to weight optimization
of feed-forward neural networks. Training performance varies depending on the
objective function and the underlying error surface for a given problem and network
configuration (ILONEN et al., 2003).

Gradient descent is widely used, in this method the weights and biases are
updated towards the negative gradient of the function, it is based on a linear
approximation of the error function (MOLLER, 1997). The backpropagation
algorithm (RUMELHART and MCCLELLEND, 1986) is the most popular in this
category. Plaut et al. (1986) update the descending gradient with the addition of
a momentum term, which incorporated a second order information to the method.
In this context, some heuristics have been proposed to adapt learning rates and
momentum.

Adaptive algorithms based on gradient have been proposed in order to
overcome the difficulty in choosing the best learning rates for each region in
the search space. In this context, the resilient Retropropagation algorithm
(RIEDMILLER and BRAUN, 1993) gained prominence and motivated the
development of several variants (ANASTASIADIS et al., 2005).

Other methods using second derivatives have been proposed and, some of the
most relevant examples of this type of methods are the quasi-Newton Levenberg-
Marquardt (LEVENBERG, 1944; MARQUARDT, 1963) and the conjugate
gradient algorithms (BEALE, 1972).

The Newton method is not applicable for training neural networks in their
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original form, because it involves an inversion of the Hessian matrix, which is an
expensive computational task. Several modifications of Newton’s algorithm exist to
incorporate techniques in order to guarantee a definite non-singular positive hessian
matrix. This class of algorithms is called quasi-newton, which is based on the idea
of accumulating the curvature information as the iteration process ( PLAUT et al.,
1986).

Conjugate gradient, inicially developed by Hestenes and Stiefel in 1952, can be
considered as intermediate method between gradient descent and Newton’s method.
Conjugate gradient methods produce non-interfering directions of search, with the
assumption that the error function is quadratic ( PLAUT et al., 1986).

The main goal of this article is to approach MLP learning through the Bayesian
framework, with Monte Carlo via Markov chain method. Therefore, we assume a
priori distribution for the model weights. In order to understand the learning
process and the estimation, we simulated a set of data and observed the results
of the posterioris ones and the convergence of the chains. We also assessed the
estimates and convergence for a time series of WTI oil prices with which it was
possible to make a forecast with a credibility interval.

Section 2 describes the multilayer perceptron neural network and presents the
configuration of the network used in the simulation study. Section 3 describes how
the simulation was performed. Section 4 presents the Bayesian approach for weights
estimation. In Section 5, we apply the model to historical oil series WTI and some
final remarks are presented in Section 6. The R implementation and the datasets
are available in the supplementary materials.

2 Multilayer Perceptron Artificial Neural Network

The multilayer perceptron (MLP) model, whose learning is supervised by error
correction, has an architecture with more than one layer, it is acyclic (when the
output of a neuron cannot serve as an input to some previous neuron) and it is
connected (each input is processed by all neurons). The propagation rule is given
by the internal product of the weighted inputs with the addition of the bias term and
the output from the previous layer is the input from the current layer (HAYKIN,
2003).

MLP training occurs in the forward and backward phases. In the first phase,
the entries pass through the entire network calculation structure with a certain set
of weights and its output is compared with the observed values, in order to compute
some loss function. In the second phase, a training algorithm is applied to reduce
the loss function by fitting the weights (AGGARWAL, 2018).

Figure 1 presents an illustration of a multilayer perceptron network structure.
For this example, the input layer contains 5 covariates; the single hidden layer
contains two neurons, and the output layer contains one neuron. This example
structure was used to approach the applications.
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Figure 1 - Structure of a multilayer perceptron model with five inputs and two
hidden layers.

Each of the n covariate xi, for i = 1, . . . , n, is weighted by wij which links
neuron i from the input layer to hidden neuron j, with j = 1, . . . , k, where k is the
number of neurons in the hidden layer.

Thus, in each hidden neuron j, there is the sum of the input signals weighted
by the neuron synaptic weights with the addition of the term bias bj , according to
Equation 1 (HAYKIN, 2003)

vj =

n∑
i=1

xlwlj + bj . (1)

The output vj goes through an activation function, which for this article is the
logistical sigmoid, according to the Equation 2

ϕ(vj) =
1

1 + e−vj
. (2)

Each j neuron in the hidden layer is then weighted by wjh, where h corresponds
to the output layers, that for this case are unique. Then, these weights are added
with the bias, according to the Equation 3. Finally, the result goes through an
activation function, which in this case is the identity function
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µ̂h =

k∑
j=1

wjhϕ(vj) + bh. (3)

3 Data simulation

We simulated a data set using a historical oil price data set so that the
simulated data would be close to a real data. We chose 5 daily historical for the
covariates and the response variable was the next day. The weights were estimated
using a multilayer perceptron neural network with 2 neurons in the hidden layer and
a sigmoid logistic function. In the output layer, the function used was the identity.
The 15 weights were estimated using a function from the neuralnet (FRITSCH et
al., 2016) package of the R (R Core Team, 2019) software and these estimates were
saved, which resulted in the model of the Equation 4.

For the simulation study, we passed a single time with the 5 covariates by the
Equation 4. It is worth mentioning that there was no training in this part, the
intention was only to generate data with a known network structure.

µ = −3, 4 + 2, 5 1
(1+exp−(2,40+1,2x1+0,004x2−0,002x3+0,003x4−0,02x5))

+

4, 1 1
(1+exp−(−1,10+0,89x1+0,006x2−0,005x3+0,12x4−0,08x5))

(4)

In general, we specified a neural network model to explain the expected value
of a random variable. Thus, the model predicts the average of the response variable
given a set of covariates, as given in Equation 4.

For continuous output, it is reasonable to expect that the distribution of
the errors is symetric. Therefore, we assume that the response variable follows
a Gaussian distribution with an expected value µ and a variance σ2 = 1, i.e.
Y ∼ N(µ, 1). Thus, we have the weights to simulate the data set and, based
on this knowledge, we estimate the weights using Bayesian inference.

4 Bayesian Inference

In the statistical context, making inferences about new phenomena or new
observations is a common objective and, there are different strategies for achieving
this objective. The classical frequentist approach whose founders are Karl Pearson,
Ronald Aylmer Fisher and Jerzy Neyman, has been prevalent for many years.
Basically, this approach is based on the idea of inference as a generalization about
the population based on a sample. An important aspect is to recognize the
variability that exists from sample to sample and to analyze the observed data
as one of many sets that could have been obtained in the same circumstances. The
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interpretation depends not only on the observed sample but also on the hypotheses
adopted about the possible sample sets (TURKMAN et al., 2018).

In addition to the classic frequentist approach, there are others, such as
Bayesian, structuralist, likelihoodist and others. In the Bayesian inference context,
the adjustment of a data set to a probabilistic model is summarized by the result of
the probability distribution of the model parameters and the sample observations.
The statistical conclusions about a given parameter θ or about unobserved data ỹ
are based on probability statements, which are conditional on the observed value
y and can be written as p(θ|y) or p(ỹ|y). Statements of θ given y start with a
joint probability distribution of θ and y. The probability density can be written
as the product of two densities that are called priori p(θ) distribution and sample
distribution p(y|θ). Thus, we have the Equation 5 (GELMAN et al., 2014).

p(θ, y) = p(θ)p(y|θ). (5)

Conditioning the known value of y and using the conditional probability
property, the a posteriori density is described in the Equation 6. An equivalent
form omits p(y), this being fixed, it produces the a posteriori density, according to
the Equation 7.

p(θ|y) =
p(θ)p(y|θ)
p(y)

. (6)

p(θ|y) ∝ p(θ)p(y|θ). (7)

Therefore, in the Bayesian inference, after additional information about an
event that occurred, such as the observation of a data set, the priori probabilities
are reviewed using the Bayes formula, as in the Equation 7 and the posteriori
probabilities are then designated (TURKMAN et al., 2018).

Several methods were created for sampling from the posteriori distribution in
the Bayesian context. Monte Carlo via Markov chain (MCMC) is a general method
based on the values obtained for θ to approximate distributions which are corrected
to better approximate the posteriori distribution p(θ|y) (GELMAN et al., 2014).

This method operates by sequentially sampling parameter values from a
Markov chain, whose stationary distribution is exactly the interest posteriori
distribution (CARLIN and LOUIS, 2008).

The chain is a sequence of random variables θ1, θ2, . . . where for any t, the
distribution of θt, considering all previous θ, depends only on the most recent value,
that is, θ(t−1). Then, it starts from a point θ0 and for each t we get θt from
a transition distribution Tt(θ

t|θ(t−1)), which is dependent on θ(t−1). Transition
distributions must be constructed so that the Markov chain converges to a single
stationary distribution, which is the posteriori p(θ|y) distribution. The success of
the method is because the approximate distributions are improved at each step of the
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simulation, which means that it is converging to the target distribution (GELMAN
et al., 2014).

In order to estimate the parameters via Bayesian inference, JAGS (Just
Another Gibbs Sampler) was used, which is a program for analyzing Bayesian
models using MCMC. It is written in C++, however, it has an interface with software
R by the rjags (PLUMMER, 2017) package, which was used for the application.
JAGS generates the sample from the posteriori distribution given the observed
sample. The number of Markov chains can be defined in the code and produces a
sequence of independent samples from the posteriori distributions selected for each
model parameter. The MCMC output is divided into two parts. The first part is
called burn in, which is the interval between the initial value and the beginning of
the period to be considered. The burn in is an adaptive period that can be selected
for disposal. The second part occurs from the burn in point until the end of the
iterations and, the output is considered convergent (PLUMMER, 2017).

The basic methods of Markov chain simulation are Gibbs sampler (GEMAN et
al., 1984) and Metropolis-Hastings. The last one is the main method and the others
are originated from it. Initially proposed by Metropolis et al. (METROPOLIS et al.,
1953) and, posteriorly generalized by Hastings (Hastings, 1970). The Gibbs sampler
algorithm, also called full conditional sampling, generates a sample sequence from
the initial joint probability distribution θ1, θ2, ..., θk. In each Gibbs cycles iteration,
a conditional subset is extracted from the others sampled so far, using the initial
subvector of θ (GELMAN et al., 2014).

Models with 1 to 5 neurons in the hidden layer were considered for the
simulated data from the multilayer perceptron neural network. For one neuron,
for instance, we have the model according to the Equation 8. In the Equations 9
and 10, there are response and priori distributions of weights. In order to have
have a large seacrh space, the variance of the priori distribution was considered as
10.

µ = w00 + w10
1

(1+exp (−(w01+w11x1+w21x2+w31x3+w41x4+w51x5)))
(8)

Y ∼ N(µ, 1) (9)

wij ∼ N(0, 10), i = 1, 2, ..., 5, j = 1, 2 (10)

The neural network model is a overparametrized nonlinear structure, in
addition there is multiplication between weights, which makes it difficult to find a
global optimum. The distribution considered a priori to the weights was Gaussian
so that the search was possible in an R space with symmetry. After the simulations
it is possible to realize that the assumption of Gaussianity may be very strong given
the structure of the model.
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Considering 2 neurons in the hidden layer, it is possible to evaluate whether
the mean of the posteriori distribution is similar to that which generated the data
set. In Figure 2, we have the posteriori distribution.

Figure 2 - Posteriori distribution for the MLP weights with 2 hidden neurons.

Markov chains are presented in Figure 3 that, for this case, did not show the
same direction in all weights, which indicates convergence difficulty.
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Figure 3 - Markov chains for an MLP trained with 2 hidden neuron.

We also tested models with 3, 4 and 5 neurons in the hidden layer. Figure
4 shows the posteriori distribution and Figure 5 the Markov chains, both for 5
neurons. We can verify bimodal distributions in the chains for certain weights,
which shows the difficulty in finding a single optimal value.

Figure 4 - Posteriori distribution for the MLP weights with 5 hidden neurons.
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Figure 5 - Markov chains for an MLP trained with 5 hidden neuron.

5 Application

In addition to the simulation study, we did an application with a historical
daily series of WTI oil price corresponding to the period from January 1, 2015 to
December 16, 2019. The first 1000 days were used for training, which corresponds
to approximately 80% of the total, and 262 for the forecast.

In Figure 6 it is possible to check the times series and the cutoff point that
separates training and validation sets, which corresponds to November 30, 2018.
The data were obtained directly from the ipeadatar (GOMES, 2019) package.
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Figure 6 - WTI oil times series.

The correlation between the variables is represented in Figure 7 and, as
expected, it is possible to see a high correlation and that it gradually decreases
as the days move away from the predicted day. The covariates used are t− 1, t− 2,
t − 3, t − 4 and t − 5. The first considers the previous day value, the second two
previous days of the forecast and so on up to five days before the forecast.

The weights were estimated by Bayesian inference with the attempts of 1 to 5
neurons in the hidden layer of the MLP. The activation function used for all cases
was the logistical sigmoid. The variance of the priori distribution was considered
as 1.

In Figure 8 there is the 95 % credibility interval for the validation period with
two neuron in the hidden layer. Frequentist statistics uses confidence intervals while
Bayesian statistics uses credibility intervals. In general, the Bayesian credibility
intervals do not coincide with the standard confidence intervals, since the first one
incorporates contextual information specific to the priori distribution (CARLIN,
2008; TURKMAN et al., 2018).

Despite the following historical behavior, the range is quite wide. It is also
possible to observe the average represented in white dotted lines.

For models with 1 to 5 neurons in the hidden layer, the credibility intervals
of 95 % are similar and quite wide, this shows the difficulty of convergence of the
model. Other versions of the MCMC with the Hamiltonian Monte Carlo could be
better for the problem.
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Figure 7 - Variables Correlation.

Figure 8 - Credibility interval for an MLP trained with 2 hidden neuron.
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6 Discussion

The aim of this article was to understand the multilayer perceptron neural
network structure with a learning approach via Bayesian inference in order to better
interpret the network. First, we applied it in simulated data and after in real data.

The chains, in general, did not obtain a stationary behavior. Especially with
the posteriori distribution for the weights with two neurons in the hidden layer, the
mean did not coincide with the one that generated the simulated data. In addition,
for some structures, a bimodal posteriori distribution was obtained, which indicates
that more than one mean was found.

There is also evidence that as the structure of neurons in the hidden layer
increases, there is also greater difficulty in convergence. The network structure
allows more than one possible configuration for the combination of weights, which
means that a different combination can find the same model error and consequently
it is difficult to find a single model structure for the data.

For future studies, the Bayesian approach could be tested for other
configurations besides the multilayer perceptron, such as Recurrent Neural Networks
(RNN) that have gained prominence in time series applications. Applications
could also be made with other activation functions besides the logistical sigmoid.
Regularization could also be carried out to alleviate identifiability problems.

Supplementary material

http://www.leg.ufpr.br/doku.php/publications:papercompanions

DE PAULI, S. T. Z.; KLEYNA, M.; BONAT, W. H. Redes neurais artificiais
multicamadas perceptron: uma abordagem para aprendizagem através da estrutura
bayesiana. Rev. Bras. Biom., Lavras, v.39, n.1, p.45-59, 2020.

RESUMO: A área de aprendizado de máquina ganhou destaque recentemente e as redes

neurais artificiais estão entre as técnicas mais populares nessa área. Tais técnicas têm

a capacidade de aprendizagem, que ocorre durante um processo iterativo de ajuste do

modelo. A Multilayer Perceptron (MLP) é uma das primeiras redes a surgir e, para

essa arquitetura, backpropagation e suas modificações são algoritmos de aprendizagem

amplamente utilizados. Neste artigo, o aprendizado da rede neural MLP foi abordado

a partir da perspectiva Bayesiana por meio de simulação de Monte Carlo via cadeias

de Markov (MCMC). A arquitetura de uma MLP consiste nas camadas de entrada,

ocultas e de sáıda. Na estrutura, existem vários pesos que conectam cada neurônio

em cada camada. A camada de entrada é composta pelas covariáveis do modelo. Na

camada oculta, existem funções de ativação. Na camada de sáıda, está o resultado, o

que é comparado com o valor observado e a função de perda é avaliada. Analisamos

o aprendizado da rede por meio de dados simulados de pesos conhecidos a fim de

compreender a estimação pelo método Bayesiano. Posteriormente, previmos o preço do

óleo WTI e obtivemos um intervalo de credibilidade para as projeções. Nós fornecemos

uma implementação R e os conjuntos de dados como materiais complementares.
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