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ABSTRACT: The quantity and complexity of generated data due to advances in

genetic sequencing technologies has made statistical analysis an essential tool for their

correct study and interpretation. However, there is still no agreement about which

methodologies are more appropriate for those data, especially for the selection of genetic

features that influence a specific phenotype. Genetic data are usually characterized by

having a number of variables which is much greater than the number of observations.

These variables exhibit little variability and high correlation. These characteristics

hinder the application of traditional methodologies for variable selection. In this work

(i.) we present different methodologies for selecting variables - Random Forest, LASSO

and the traditional Stepwise method; (ii.) we apply them to genetic data to select SNP

markers that characterize the presence or absence of a disease and (iii.) we compare

their performances. Random Forest and Lasso show similar prediction performance,

however none of them correctly select the relevant SNPs.
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1 Introduction

The science of Genetics studies the presence, variation and transmission of
features through generations. Some of the first studies date back to 1860, in which,
the Austrian monk Gregor Mendel unveiled the principles of heredity by crossing pea
plants. However, it was only in the middle of the 1950s that Francis Crick, James
Watson and Maurice Wilkins discovered DNA (deoxyribonucleic acid) and how the
genetic information is stored. DNA is composed of two strands of polynucleotides (a
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double helix) that contain the nitrogenous bases adenine (A), thymine (T), cytosine
(C) and guanine (G). A bonds with T and C bonds with G, via hydrogen bonds.

Advances in sequencing technology have decreased the cost and increased the
speed of obtaining data, allowing the first investigations on molecular markers (DNA
sequences capable of presenting the polymorphism of the individuals being studied)
to emerge. The first strategy for the study of molecular markers is introduced
at the beginning of the 1980s, with the characterization of RFLP (Restriction
Fragment Length Polymorphism) markers in swine (CHARDON et al., 1985) and
cattle (BECKMANN et al., 1986).

Most of the first investigations used limited and laborious methodologies to
analyze data. However, technological development promoted the improvement and
evolution of methods with greater precision. Currently, RFLP is no longer used
and has been replaced by the SNP (Single Nucleotide Polymorphism) technique.
SNP markers are composed of the variation of only one nucleotide (A,T,C or G) in
a determined gene and they may or may not cause a change in the phenotype
(observed physical feature). Sometimes, a SNP is not the cause of a disease,
however, its identification helps establish the location (in the genome) of genetic
factors that contribute to the phenotype’s variability, that is, in the presence of the
disease.

Despite technological advances, there are few statistical studies on genetic
data, more specifically those that associate SNP markers with the presence of
diseases, as this situation presents problems that hinder the use of traditional
statistical tools. Generally, data present a greater number of variables than
observations, highly correlated variables and rare mutations. The most used
methods for variable selection are based on the estimation of a simple linear
regression model between the genotype of each SNP and the studied phenotype.
The most significant SNPs are chosen by hypothesis tests. This approach presents
benefits, such as: low computational processing time, ease of use and interpretation
of results. However, Zeng et al. (2015), Oliveira (2015) and Feng et al. (2012) warn
of the deficiencies of this approach that does not consider the association structure
between SNPs, does not allow the interaction between the effects of two or more
SNPs on the phenotype and usually has low power.

With the goal to overcome the introduced deficiencies, some methodologies
have been proposed, some of them classified as machine learning methodologies.
Here, we highlight: Random Forest (MOKRY et al., 2013; OLIVEIRA, 2015;
BREIMAN, 2001), Principal Component Analysis (LEWIS et al., 2011), Allelic
Frequency Analysis (SUEKAWA et al., 2010; SASAZAKI et al., 2011), Genetic
Algorithms (GOLDBERG, 1989; OLIVEIRA, 2015), Sparse Partial Least Squares
(CHUN and KELES, 2010) and LASSO (PARK and CASELLA, 2008; OLIVEIRA,
2015).

Comparing the predictive accuracy of the LASSO and the combination of
the likelihood estimation method with the traditional Stepwise variable selection
method, in a linear regression model, Kumar et al. (2019) and Hastie and Tibshirani
(2017) show that LASSO outperforms the latter methodology in several different
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scenarios. Considering logistic models, that are the focus of this study, Alcântara
Junior (2020) show similar results. Analyzing genetic data, in particular, Ogutu
et al. (2011) evaluate the predictive accuracy of Random Forest (RF), Boosting
and Support Vector Machines (SVMs) for predicting genomic breeding values using
dense SNP markers and show better performance for Boosting than for SVMs and
RF.

Based on these methodologies, the objectives of this work are to study and
apply Random Forest and LASSO in genetic data to select SNP markers that
characterize the presence or absence of a disease and to compare their performance
with the Stepwise. Proposals and suggestions for adaptation and better use of these
methodologies in the analysis of genetic data are also carried out. The data set used
is the GAW17 (ALMASY et al., 2011), which is a well-known data set for evaluating
the performance of methodologies in the selection of SNPs.

The manuscript is organized as follows. Sections 2 and 3 present the LASSO
and Random Forest methodologies, respectively. Section 4 discusses the GAW17
data. In Section 5, we describe how the analysis is carried out and how the results
are obtained. Finally, Section 6 shows final remarks and a discussion.

2 LASSO

The LASSO (Least Absolute Shrinkage and Selection Operator), proposed by
Tibshirani (1996), is a variable selection methodology whose goal is to find a more
parsimonious Least Squares estimator for a regression model. Consider the linear
model,

yk =

d∑
i=0

(βixki) + εk, (1)

for k =1,2,. . . ,N , where yk is the observed value of the response variable (phenotype)
of the k-th individual, βis are the unknown parameters (regression coefficients), xki
is the observed value of the i-th covariate (genotype of the i-th SNP) for the k-th
individual and εk is the random error for the k-th individual.

According to Izbicki and Santos (2018), the main idea of LASSO is to add the

restriction
∑d
i=1 |βi| ≤ c, where c = c(λ), to the traditional Least Squares formula

used to estimate the value of βis. With this addition, the estimate of some βis are
approximately zero and, therefore, the method selects those covariates that present
βi 6= 0 as relevant variables.

Such methodology is then used to define the complexity of the model, since a
greater number of covariates in the model means a more complex model. Usually,
lower values of c represent models with a lower degree of complexity, as they
generally lead to the selection of smaller amounts of covariates. Thus, the LASSO
methodology looks for

β̂ = arg min
β∈Rd+1

n∑
k=1

(
yk − β0 −

d∑
i=1

βixki

)2

+ λ

d∑
i=1

|βi| , (2)

Rev. Bras. Biom., Lavras, v.39, n.1, p.71-88, 2021 - doi: 10.28951/rbb.v39i1.499 73



where λ ≥ 0 is a regularization parameter. It is worth noting that the penalty used
in LASSO is quickly implemented and often has good computational performance.

LASSO can be extended to a wide variety of objective functions in addition to
linear regression, such as Generalized Linear Models, which will be better described
in Section 2.3. In the application presented in this work, we use the LASSO version
that predicts a probability of success (such as a Logistic Regression) and not a value
on the real line.

2.1 Choosing λ by cross-validation

Note that for each value of λ in Eq. (2), a different set of βis is obtained and, if
λ = 0, the LASSO becomes identical to the Least Squares estimator, that is, with all
non-zero regression coefficients. One of the main advantage of the methodology is
that we can choose the value of λ which provides a final model with good predictions
and which also selects the most important covariates.

In order to find the best model that LASSO can estimate for the data being
analyzed, it is essential to choose a good value for λ. In general, according to Izbicki
and Santos (2018), the choice of λ is made from a cross-validation of different fitted
models. It is worth mentioning that LASSO does not perform cross-validation and
it only fits a model for the fixed λ.

Cross-validation is a technique that evaluates the prediction performance of
an estimated model in a set of independent data. The most frequently used method
of cross-validation is the k-fold. Hastie et al. (2008) defines the k-fold algorithm as
follows:

• the database used to estimate the model is randomly divided into k mutually
exclusive subsets of approximately the same size;

• then, all possible combinations (called Training bases) of k − 1 of these k
groups are made and, for each combination, we estimate models for different
values of λ;

• the Prediction Error (EP ) of each estimated model is calculated on the subset
that is not used in the model estimation (called the Validation base). In this
case, the EP is defined as the sum of the squared residuals of the base that
is separated for validation; and

• we calculate the average EP for each λ. The value with the lowest average
EP is chosen as the λ that provides the best model among those estimated.

2.2 Implementation

During the studies, some problems were observed. As it is known, the LASSO
estimate for βis is biased and can change significantly depending on the Training
and Validation bases used in their estimation. In some situations, βis that have
an estimate that is close to zero in one sample, may have a high absolute value in
another.
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An alternative to solve this problem in the application included in this study
is to use Generalized Linear Models (GLM) to calculate the βis estimate. In this
case, LASSO is used for variable selection and the final model and its estimates
are obtained from the fitting of a GLM only considering the variables selected by
LASSO.

LASSO is already implemented in R packages. One of which is glmnet
(FRIEDMAN et al., 2010). Built by Jerome Friedman, Trevor Hastie and Rob
Tibshirani, this package not only performs estimation of βis but also chooses the
best value of λ from cross-validation.

2.3 Generalized Linear Models

Since we use Generalized Linear Models for the final estimation of the
regression coefficients for the LASSO methodology and also along with the Stepwise
method to compare the performance of different procedures, we briefly describe
these models. GLM were proposed by Nelder and Wedderburn (1972). Until their
proposal, attempts were made to fit normal linear models for almost any type of
random phenomenon, but in many cases it was necessary to transform the variables
involved in these phenomena for these models to be considered adequate.

With the limitations of the normal model, GLM were created based on the
idea of opening a range of options for the distribution of the response variable
(PAULA, 2013), because these models allow the distribution of y|x to belong to
the exponential family and not only to the normal family. Poisson, Inverse Normal,
Normal, Gamma and Binomial are examples of distributions that belong to the
exponential family. The estimation of GLM using maximum likelihood methodology
ensures the uniqueness of the β’s estimator.

Because the data used in this investigation present a binary response variable,
we use a Binomial distribution with n = 1 to fit the GLM. Our interest is to estimate
the probability of occurrence of a specific disease for each individual. The canonical
link function of the Binomial distribution is the logit function, given by

g(pk) = log

(
pk

1− pk

)
= β0 +

d∑
i=1

βixki,

where pk is the k−th individual’s probability of success. In this case, we have a
Logistic Regression.

As already mentioned in Section 2, we can use LASSO to select relevant
variables and GLM to estimate the regression coefficients of the final model. We
follow this method for the application of the LASSO in this study.

3 Random Forest

Decision Tree, Boosting and Bagging are essential methodologies for the
Random Forest development. Therefore, we briefly discuss these three techniques
to better understand the methodology we use here.
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3.1 Decision Tree

Decision Tree or Regression Tree is a supervised machine learning
methodology. In summary, a tree is built from the significance of each covariate
in relation to the response variable and a node is created from each significant
covariate. Thus, we look for the variable that has the greatest effect on the response
variable and from it, a node is created, usually composed of two branches or two
classes of the predictor variable. Then, we try to identify which of these two
branches should be partitioned from a new covariate.

According to Izbicki and Santos (2018), the Decision Tree algorithm includes
two steps:

• I. Creating a Decision Tree: it seeks to find the partitions in which the
response variable appears as homogeneously as possible on the leaves; and

• II. Tree Pruning: each node is removed, one at a time, and the effect caused
by that removal is observed in the Prediction Error for the Validation data.
From these values, we decide which nodes will remain in the Tree. This is an
essential step to avoid model overfitting to the Training data and to reduce
the complexity of the Tree.

3.2 Bagging and Boosting

Bagging (BREIMAN, 1996) is a technique whose objective is to reduce the
variance of a forecasting model, in our case a Decision Tree. This methodology
consists in fitting a Decision Tree for several independent samples. In the end, each
Tree has the weight of a vote and the decision is made by the simple majority of
them, that is, 50% + 1 of the total votes. For data with great variability and low
bias, Bagging is a methodology that usually presents good results, that is, good
individual forecasts.

Unlike Bagging, the final vote of Boosting (SCHAPIRE et al., 1998) is defined
in a weighted way since, while they are estimated, the Trees consider greater weight
for the observations that were previously erroneously predicted. Another difference
between the two methodologies is that while Bagging is concerned with keeping the
prediction variance small, Boosting focuses on reducing bias with better predictions.
In general, Boosting outperforms Bagging and, in most cases, Boosting is preferable
(HASTIE et al., 2008).

3.3 Random Forest

Random Forest methodology (BREIMAN, 2001) is a combination of different
and uncorrelated Decision Trees for decision making. Its performance is similar to
Boosting (HASTIE et al., 2008).

Random Forest’s main idea is to reduce the correlation between the Trees
without increasing the variance of the prediction. In other words, the methodology
seeks to find a balance between Boosting and Bagging. We can define the algorithm
for the growth of a Forest as follows:
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1. resample η bootstrap samples - Training bases;

2. for each of the η samples, grow a tree following the next steps:
i. randomly select m covariates from the set of d available covariates. Breiman
and his contributor Adele Cutler recommend that the number of variables to
be used in each Tree is m = d

3 with at least 5 nodes. In practice, the best
value for these parameters can be defined from the data;
ii. choose the most significant variable among the m drawn variables;
iii. divide the node into two “child nodes” so that the leaves are as
homogeneous as possible in the response variable;
iv. repeat steps ii. and iii. until the entire tree grows. Then, proceed to prune
the tree; and

3. take the prediction of new observations.

In the case of Random Forest regression, the final prediction for an observation
is the average of its Tree predictions, defined as

f̂η =
1

η

η∑
`=1

T`(x) (3)

where T`(x) is the predicted value for x in the `−th fitted Tree.

3.3.1 Out-of-bag Samples and Cross-validation

One of the characteristics of Random Forest is the use of Out-of-Bag (OOB)
samples, a cross-validation methodology, to grow and prune Trees and fit the best
Forest. Hastie et al. (2008) defines an OOB sample, for a specific bootstrap Training
sample, as being the base composed of all the observations that are not part of
it. In the estimation via Random Forest, the training phase ends when the OOB
Prediction Error is stabilized.

The final predicted value for each observation is calculated using only the Trees
of which the observation is not part of the bootstrap Training base. We calculate
the total Prediction Error in a similar way to the k-fold method explained in Section
2.1.

3.3.2 Variable Importance and Implementation

The OOB samples are also used to calculate the importance of the variables,
which is given by the change in the Prediction Error when the i−th covariate is
excluded from the Trees, while keeping the other variables in Trees. Therefore, to
measure the importance of each variable we have the following procedure:

1. the OOB Prediction Error of the η Trees is calculated;

2. for each one of the m covariates of each Tree, remove the nodes relative to it
and calculate the new Error;
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3. the Partial Importance (IP ) of the i-th variable in the `−th Tree (IPi`) is
calculated as the relative difference (in percentage) between the Error of the
`−th Tree without the i−th variable and the Error of the `−th full Tree, given
by Equation (4) as:

IPi` =

(
EPi` − EPc`

EPc`

)
∗ 100; (4)

4. the importance of the i−th variable is the average of its η Partial Importances.

Random Forest is implemented in an R package called randomForest (LIAW
and WIENER, 2002) with the methodology created by Breiman. The default values
of the parameters set in the package, such as number of covariates m and depth of
the trees, among others, are the authors’ recommendations. From it, we can fit a
Random Forest for classification or regression, with the first case being the interest
of this study.

4 GAW17 data

The database analyzed in this study is called Genetic Analysis Workshop 17
(GAW17) and was built from simulated and real data for 697 unrelated individuals,
327 men and 370 women. The simulation of a complex disease and risk factors
was made based on the real data contained in the 1000 Genomes Project. In this
simulation, 24,487 SNPs divided in 22 chromosomes were obtained.

The simulation was made for a common and complex disease that has a
prevalence of 30% in the population. Along with the disease, three other continuous
quantitative phenotypes were simulated: Q1, Q2 and Q4 that are not explored
in this study, in addition to smoking status. The simulated SNP markers are
autosomal, that is, there are no markers present on the sex chromosome. For
more details on the simulation of these data see Almasy et al. (2011). Although
the disease risk is also a function of Q1, Q2 and Q4 and, consequently, is influenced
by their influential SNPs, this study focuses mainly on identifying the SNPs that
are relevant to the disease liability.

Originally, the information in the database for each SNP is based on nitrogen
bases A, T, C or G, with 16 possible pairs: A/A, T/T, C/C, G/G, A/C, A/G, A/T,
C/A, C/G, C/T, G/A, G/C, G/T, T/A, T/C, T/G. For this study, we classify the
observations as follows:

• A/A or T/T = 1: dominant homozygote;

• C/C or G/G = -1: recessive homozygote; and

• A/C, A/G, A/T, C/A, C/G, C/T, G/A, G/C, G/T, T/A, T/C or T/G = 0:
heterozygous.
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Almasy et al. (2011) highlights 51 SNPs that are used in determining the
presence or absence of the disease in the individuals being analyzed. They are
distributed as follows: 30 SNPs on chromosome 1, 3 on chromosome 2, 5 on
chromosome 8, 6 on chromosome 14, 1 on chromosome 16 and 2 on chromosomes
17, 18 and 19. Table 1 shows the number of individuals in each category (-1, 0 or
1) for each of these 51 relevant SNPs. Almasy et al. (2011) also presents the value
for the regression coefficients used for the phenotype simulation.

Table 1 - Descriptive analysis of significant SNPs in the entire database, where the
number after the letter C identifies the chromosome from which it comes

chromosome 1 chromosome 2
SNP -1 0 1 SNP -1 0 1

C1S9391 0 1 696 C2S2286 696 1 0
C1S9423 696 1 0 C2S2288 693 4 0
C1S9432 683 13 1 C2S2307 0 1 696
C1S9445 696 1 0 chromosome 8
C1S9446 696 1 0 C8S4825 696 1 0
C1S9449 696 1 0 C8S4839 696 1 0
C1S9455 693 4 0 C8S886 696 1 0
C1S9457 696 1 0 C8S900 695 2 0
C1S7061 689 7 1 C8S909 695 2 0
C1S11396 696 1 0 chromosome 14
C1S3181 696 1 0 C14S1381 696 1 0
C1S3182 696 1 0 C14S1382 0 5 692
C1S5748 0 1 696 C14S3630 0 1 696
C1S9164 695 2 0 C14S3695 696 1 0
C1S9165 0 1 696 C14S3704 0 5 692
C1S9172 691 6 0 C14S3706 0 246 451
C1S9173 0 2 695 chromosome 16
C1S9174 696 1 0 C16S1894 0 1 696
C1S9189 688 9 0 chromosome 17
C1S9200 696 1 0 C17S4578 39 154 504
C1S9222 0 1 696 C17S4581 0 1 696
C1S9250 695 2 0 chromosome 18
C1S9266 693 4 0 C18S2475 696 1 0
C1S9267 694 3 0 C18S2492 0 24 673
C1S9306 696 1 0 chromosome 19
C1S9320 696 1 0 C19S4929 695 2 0
C1S9333 696 1 0 C19S4937 695 2 0
C1S9346 696 1 0 Disease
C1S9373 696 1 0 0 1
C1S2919 696 1 0 488 209

We observe in Table 1 that approximately 30% of the individuals exhibit the
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disease being studied, which shows that we are not dealing with a rare disease.
We also note that 30 of the relevant SNPs present only one observation in a
different category. These results show that the SNPs that determine the disease
are uncommon, which makes our study a case of very low variability in covariates,
which consequently makes these difficult to select as importante variables.

In our study, the presence of each one of the 51 important SNPs represents
an increase in the probability of the individual presenting the disease. Thus, a
person who has a variation in the 51 SNPs is the one most likely to have the
disease. As SNPs are rare, we do not have a large number of individuals that
present a considerable proportion of these 51 SNPs, therefore we do not have a
large difference between the disease’s probability for sick and non-sick individuals,
which increases the chance of error.

Another factor of complexity of these data is that when we split the full
base into Training (containing 70% of the observations) and Testing (with the
remaining 30% of the observations), the importance of SNPs that have only 1
different observation is too complex to be evaluated and modelled since this only
observation is either in Training or Testing base.

The full data set and the R codes used for the analysis are available on GitHub
at the link https://github.com/Mariana3112/TCC.

5 Analysis and Results

According to Mendel’s Second Law, the information contained in a
chromosome is independent of the others. Thus, for selecting SNPs that influence
the presence of the disease, the methodologies are applied separately to each of the
22 autosomal chromosomes.

The database is randomly divided in two parts: the first with 70% of the
base (489 observations) is called Training and the second with remaining 30% (208
observations) is called Testing. For the models’ estimation, including determining
the LASSO regularization parameter (λ), we use the Training base. The obtained
models are applied to the Testing base only to compare their prediction performance.
This method allows to compare the performance of the models on a different base
than the one used in their fit, showing us how they behave in completely independent
data. Then, in addition to analyze the SNPs selected by each methodology we
evaluate the predictive accuracy of each model in the independent data.

In Sections 2 and 3 we notice that both methodologies use a method of cross-
validation for the complete models’ estimation and, for that, they split the Training
base into two bases: Effective Training and Validation. The way the base are
divided can influence the variable selection and estimation of the final models.
Taking this into account, we fit 21 different models for each one (with different
seeds for the division of the Training base), instead of performing a single fitting for
each methodology. Then, we record the covariates selected in each run for LASSO
and Random Forest for each chromosome. For LASSO, we select all SNPs that
have a non-zero regression coefficient and, for Random Forest, the 30 most relevant
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SNPs.

5.1 Stability in the Variable Selection

We notice a variation, which is more evident in LASSO, in the variable selection
in both methodologies among the 21 fits. For this reason, in order to finally select
the important SNPs in each methodology, we analyze the frequency with which
each SNP appeared in the 21 fits. The results are shown in Table 2.

Table 2 - Number of SNPs that appear in each scenario
Number of fits

21 ≥17 ≥14 ≥12
LASSO Forest LASSO Forest LASSO Forest LASSO Forest

0 123 0 257 1 337 3 401
≥11 ≥7 ≥1

LASSO Forest LASSO Forest LASSO Forest
5 444 66 654 961 2,935

When analyzing Table 2, if we define important SNPs as those that are selected
in at least 17 runs (80% out of total runs), LASSO does not select any covariate.
If we consider important SNPs as those that are selected in at least one fit, both
methodologies select many SNPs. These results highlight that for the data used in
this work, LASSO presents great instability in the variable selection and Random
Forest is not constant, but is more stable than LASSO.

Considering the values presented in Table 2, we define important SNPs as
those that are selected in at least 11 runs of considered methods.

5.2 LASSO

In Section 5.1 we observe that 5 covariates are selected in at least 11 of
LASSO’s fits. Table 3 shows the selected SNPs and in which categories the
observations are allocated for the whole and Training bases.

Table 3 - Descriptive analysis of the SNPs selected by LASSO, where the number
after the letter C in the name of the SNP identifies which chromosome it
comes from

Full base Training
SNPs -1 0 1 -1 0 1

C3S5389 685 12 0 482 7 0
C3S5742 683 12 2 479 9 1
C3S4611 693 4 0 486 3 0
C15S774 0 4 693 0 4 485
C18S2320 693 4 0 485 4 0
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First of all, we note that only C18S2320, in chromosome 18, is on any of the
chromosomes that contain relevant SNPs for the latent liability and is close to two
relevant SNPs in gene PIK3C3. However, it is not an important SNP and LASSO
is not successful in selecting any of the 51 relevant covariates.

We also highlight that the heterozygous observations of SNPs C15S774 and
C18S2320 are all in the Training base and consequently, none are in the Testing base.
Therefore, the real importance of these covariates is not analyzed and confirmed in
the independent database.

Despite not selecting any of the expected covariates, it is possible to note
that LASSO identifies SNPs with marginal distributions similar to those used in
the simulation. Looking at Tables 1 and 3, we observe that C3S5389 has similar
characteristics to C1S9189. However, when we analyze their contingency table, we
realize that the SNPs’ mutations do not occur in the same individuals. Therefore,
one should not replace the other. The same happens with the SNP C3S5742, which
could be seen as a substitute for the C1S9432, but as the mutations do not occur
in same individuals, they are not substitutes. For SNPs identified on chromosome
3, we also highlight that they are close to 13 SNPs of BCHE gene that are relevant
for the continuous phenotype Q2 which impacts the disease risk. The marginal
distribution of SNP C15S774 resembles that of C14S1382 and C14S3704, but it is
not the same individuals that suffer these mutations.

Not unlike other selected variables, SNP C18S2320 has a marginal distribution
similar to an important SNP on another chromosome. SNP C18S2320 along with
C3S4611 could have been selected in place of C1S9455, C1S9266 or C2S2288 but
the mutations in these SNPs happen in different individuals.

In Section 2, we discuss the fact that the estimate for βis can be biased when
calculated by LASSO. Therefore, we use it for selecting the variables and estimate
the final model by a Logistic Regression. Thus, we obtained the model defined in
Equation (5) as

log

(
p̂k

1− p̂k

)
= 41.71 + (2.91 ∗ C3S5389k) + (1.87 ∗ C3S5742k)

+(12.68 ∗ C3S4611k)− (12.68 ∗ C15S774k) + (12.68 ∗ C18S2320k).

(5)

We finally apply the fitted model on the Testing base and the Prediction Error
is calculated as EPLASSO = 51.64. This performance indicator is important later
on, when we compare the models resulting from each tested methodology.

5.3 Random Forest

In Section 5.1, we observe that 444 SNPs are selected in at least 11 of the 21
estimated Random Forests. Due to the large number of variables, we do not show
a detailed analysis of their characteristics as we did for LASSO.

Despite being more stable than the LASSO in the variable selection, we
notice that Random Forest also selects different variables depending on the OOB
samples. Therefore, we run the methodology 5 more times, with different seeds,
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only considering the 444 most important SNPs. The final model is chosen by the
lowest Prediction Error and presents EPRF = 50.08 in the Testing base.

Figure 1 shows the variables that are most important in the final model. We
note that almost all the chromosomes presented in Table 1 are represented, except
chromosomes 8 and 19. However, no real relevant SNP is selected. In addition to
SNPs C18S2320 and C3S5742 that are also identified by LASSO, the Random Forest
selects C17S4432 and C17S4431 as two of the most relevant SNPs. Although they
are not true important SNPs, they are close to two true relevant SNPs, C17S4578
and C17S4581, in PRKCA gene.

Figure 1 - Importance of variables via Random Forest, where the number after the
letter C in the name of the SNP represents which chromosome it comes
from.

5.4 Random Forest and Logistic Regression

Given that the Random Forest method still has a large number of selected
SNPs, much larger than the actual number of significant SNPs, we also estimate a
third model combining the Random Forest and Logistic Regression methods. The
idea of this third method is to use the Random Forest for a pre-selection of variables
and then estimate the final model through Logistic regression. This final model is
estimated in two ways:

1. using the 444 variables selected by the Random Forest; and
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2. applying a second variable selection criterion, the Stepwise method.

A Logistic regression model is fitted with the 444 previously selected variables.
As it is a very extensive model, we only show the EP for comparison with other
methods, EPRFLG = 79.38.

In search of a more parsimonious model, we also select variables via Stepwise
along with Logistic Regression. Stepwise is a methodology in which variables are
added and removed from the model in each step based on a pre-established criterion.
The criterion used here is the AIC (Akaike Information Criterion). Lower AIC
values generally indicate better fitted models and the variables are included or
excluded from the model if the value of the AIC decreases with the action that is
tested.

After performing 1,000 iterations, we find a model with 75 covariates. We only
include the performance measure because it is an extensive model. The resulting
EP in the Testing base is given by EPRFLGS = 76.92.

5.5 Performance’s Comparison

We observe that cases where we combine the Random Forest and GLM
methodologies display the worst prediction results, as they are the models with the
greatest errors. Applying Stpewise to select variables in large dimensional data is
also almost impracticable computationally. The models that combine the selection
via LASSO with fitting via GLM have similar prediction errors to the models in
which fitting and selection is done via Random Forest. However, the model using
only Random Forest shows the lowest Prediction Error.

Regarding complexity, the model fitted by LASSO is much simpler, being
composed of only 5 covariates, while the Random Forest selects 444. From the
results observed in Section 5.1 and considering the data set being studied, the
Random Forest methodology is more stable in selecting variables compared to
the selection made by LASSO. None of the studied methodologies show good
performance in selecting the 51 true relevant SNPs. This is expected considering the
complexity of the analyzed data. However, they identify other SNPs with similar
marginal distribution or close, sometimes in the same gene, to true significant SNPs.

Considering other studies that also analyze the GAW17 unrelated data, Wang
et al. (2011) propose a supervised coalescence of SNPs in a specific region (a gene,
for instance) that collapses multiple common and rare SNPs into a gene-level marker
and treats them as a single predictor in the model. The variable selection is carried
out using an empirical Bayes method which assumes a mixture prior distribution
for the regression coefficients. They select SNP C8S890, that is not a true relevant
SNP but is close to three important SNPs on PTK2B gene. They also identify two
other SNPs in important genes for Q1 and Q2 and several other false-positive SNPs.

Other collapsing methods of SNP information are discussed by Agne et al.
(2011), Saad et al. (2011), among others. The first authors calculate the significance
of each collapsed region by permutation test and select two or three regions among
several false-positive areas that actually contain true relevant SNPs.
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6 Discussion

In this manuscript, we verify the efficiency of two machine learning
methodologies, LASSO and Random Forest, to select SNPs markers that impact
the probability of the presence or absence of a disease in unrelated individuals.
We also verified the performance of the Stepwise method combined with Logistic
Regression after a pre-selection of variables via Random Forest. This type of genetic
data usually show low variability (rare events), large correlation and contain greater
number of variables than observations in the sample. These features make it difficult
to use traditional methods of variable selection and new methodologies need to be
proposed and tested.

When exploring the GAW17 data, we compare the stability of LASSO and
Random Forest in selecting variables when the Effective Training base is modified
and observe whether or not the markers actually used in the data simulation are
selected by the methodologies. Proposals and suggestions for adaptation and better
use of the tested methodologies in the analysis of genetic data are also carried out.

With the considered data, the most appropriate methodology to reduce the
Prediction Error is the Random Forest. However, we emphasize that the model
using LASSO for selecting variables and Logistic Regression for model fitting is
more parsimonious and presents a similar Prediciton Error.

None of the studied methodologies are able to correctly select the relevant
SNPs and this may be due to the fact that most of them present very low variability
in the considered sample. This is a very common situation in genetic data, as
mutations occur in a very small number of people. Despite the predictive capacity
of the fitted models, the associations found between some SNPs and the presence
or absence of the disease appear to be spurious, at first, since they are not true
relevant SNPs in the response variable. However, the identified SNPs usually have
similar marginal distribution or are closely located, sometimes in the same gene, to
true important SNPs. These results are not very different from the results of other
authors cited in this manuscript.

For future studies, methodologies that consider selection of rare variables
should be explored or proposed to identify significant SNPs markers. Zeng et al.
(2015) use Principal Component Analysis and Mixed Models, in addition to the
suggestion of two-stage modeling with different approaches to select them.

IÓCA, M. P.; ZUANETTI, D. A. Seleção de marcadores SNPs: analisando os dados
GAW17 com diferentes metodologias. Rev. Bras. Biom., Lavras, v.39, n.1, p.71-88,
2021.
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RESUMO: A quantidade e a complexidade dos dados gerados devido ao avanço

nas tecnologias de sequenciamento genético fez da análise estat́ıstica uma ferramenta

essencial para o estudo e interpretação correta deles. No entanto, ainda não há um

consenso sobre quais metodologias são mais adequadas para esses dados, especialmente

para a seleção de caracteŕısticas genéticas que influenciam um espećıfico fenótipo. Os

dados genéticos geralmente apresentam caracteŕısticas, tais como: número de variáveis

muito maior que o número de observações, variáveis com pouca variabilidade e muito

correlacionadas entre si, que dificultam a aplicação de metodologias tradicionais de

seleção de variáveis. Nesse trabalho (i.) apresentamos diferentes metodologias de

seleção de variáveis - Florestas Aleatórias, LASSO e o método tradicional Stepwise;

(ii.) aplicamo-as em dados genéticos para selecionar marcadores SNP (do inglês

Single Nucleotide Polymorphism) que caracterizam a presença ou não de uma doença e

(iii.) comparamos suas performances. As Florestas Aleatórias e o LASSO apresentam

performance de predição parecidas, mas nenhuma delas seleciona corretamente os SNPs

importantes.

PALAVRAS-CHAVE: LASSO; Florestas Aleatórias; marcadores SNP; seleção de

variáveis.

References

AGNE, M.; HUANG, C.; HU, I.; WANG, H.; ZHENG, T.; LO, S. Identifying
influential regions in extremely rare variants using a fixed-bin approach. In: BMC.
2011 Proceedings, v.5, n.S9, p.S3, 2011.
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