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ABSTRACT: A Rasch Poisson counts (RPC) model is described to identify individual

latent traits and facilities of the items of tests that model the error (or success) count

in several tasks over time, instead of modeling the correct responses to items in a test

as in the dichotomous item response theory (IRT) model. These types of tests can be

more informative than traditional tests. To estimate the model parameters, we consider

a Bayesian approach using the integrated nested Laplace approximation (INLA). We

develop residual analysis to assess model fit by introducing randomized quantile residuals

for items. The data used to illustrate the method comes from 228 people who took a

selective attention test. The test has 20 blocks (items), with a time limit of 15 seconds

for each block. The results of the residual analysis of the RPC were promising and

indicated that the studied attention data are not well fitted by the RPC model.
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1 Introduction

In the context of school evaluation, item response theory (IRT) models are a
set of probabilistic models where latent characteristics of individuals who take a
test and latent characteristics of the items in the test are considered to explain the
answers obtained (BAZÁN, 2018). The best-known IRT models are those where
the answer is dichotomous, for example the so-called three- parameter IRT model
used in Brazil’s National High School Exam (ENEM in the Portuguese acronym),
a standard non-mandatory exam that evaluates high school students in Brazil.
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The model considers three characteristics of the items: difficulty,
discrimination and guessing. These are called parameters of the items and need
to be estimated along with the characteristics of the individuals, called latent
traits. Particular cases of this model are the so-called two-parameter models (only
the difficulty and discrimination parameters are considered) and the models with
one parameter (which considers only the difficulty parameter) (HAMBLETON and
SWAMINATHAN, 2013).

The one-parameter model, called the Rasch model, was originally formulated
by George Rasch (1960) and is derived considering another approach. In this case,
the model considers the probabilistic distribution as well as the response variable
and belongs to the exponential family (VERHELST and GLAS, 1995). Thus, the
Rasch model, through its additive specification, can be viewed as a generalized
linear mixed model (GLMM), an important class of regression models (WANG;
YUE; FARAWAY, 2018). Therefore, methods to fit GLMMs and diagnose them
can also be applied to this model (DOEBLER and HOLLING, 2016).

Currently, it is more frequent to observe count responses in student assessment.
For example, consider an assessment where the task is to identify correctly spelled
words in a long list of words. Hence, responses to the items correspond to the
total scores (counts) or the total number of errors. In these cases, there is also a
need to develop IRT models for count responses. Fortunately, a model with these
characteristics was formulated by George Rasch (1960), called the RPC model.
Although this model is not new, it has been increasingly used in recent evaluations
and more complex models have been formulated using this model as a basis (e.g.;
HUNG, 2012; FORTHMANN, GUHNE and DOEBLER, 2019).

The RCP model can be estimated using a classical approach (see BAGHAEI,
RAVAND and NADRI, 2019) and a Bayesian approach (see MUTZ and DANIEL,
2018). Recently, Baghaei and Doebler (2019) showed that the RPC model can be
estimated using lme4 (BATES et al., 2015), considering this as a GLMM model.
In this work, we develop Bayesian estimation of the Rasch Poisson counts model
considering a similar formulation.

Residual analysis is an important tool to assess a model’s fit to a given dataset.
In the case of IRT models, we are interested in the residual analysis for test items of
the test. Thus, a tool for graphical visualization of residuals is important to assess
whether an item can be considered to follow the proposed model. In the case of
Rasch counts models, Pearson residuals have been studied for estimation using the
maximum likelihood method and are currently available for GLMMs in the stats
package in the resid function (R CORE TEAM, 2020). In this context, we propose
the use of the randomized quantile residuals developed by Dunn and Smyth (1996),
and more specifically, we develop residuals analysis through graphical visualization
considering the violin plot proposed by Hintze and Nelson (1998).

The remainder of this paper is organized as follows. In Section 2, we present
the Rasch Poisson counts model. The inference based on the Bayesian modeling
approach is described in Section 3. Also in that section, we define residual analysis
for items of the test, in particular, Pearson and randomized quantile residuals to
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evaluate the fit of the items. In Section 4, we apply the RPC model to model
a real dataset using the Bayesian approach. Finally, in Section 5, we make some
concluding remarks.

2 Rasch Poisson Counts Model

Consider a test of k items applied to n individuals, where the responses
obtained correspond to counts such as number of correct solutions or number of
errors, among others. The Rasch Poisson counts model (RPCM) assumes that the
count responses Yij of individual i in item j are independent and Poisson distributed
(RASCH, 1960) with:

Yij ∼ Po(µij) com PY (Yij = yij) =
µ
yij
ij e
−µij

yij !
(1)

where µij > 0 is the expected count value of individual i in item j, with i = 1, · · · , n
and j = 1, · · · , k. In other words, µij is a function of the parameter associated with
the “latent trait” or ability of individual i denoted by θi, and the “facility” of item
j denoted by βj . Furthermore, it is assumed to have an additive composition, using
the log link function, expressed by:

log (µij) = βj + θi + tj (2)

where: µij = exp{βj + θi + tj} with i = 1, · · · , n and j = 1, · · · , k, where n is
the number of individuals (sample size) and k is the number of items; βj is the
facility parameter of item j, θi is the latent trait of individual i and tj is the known
time limit for item j, corresponding in the expression to an offset variable, which is
relevant when modeling ratios or rates when individuals do not take the same time
lengths to answer each item. It can be fixed at zero in the case of no time limit.

In Figure 1 we illustrate the expected score (count) for some selected
combinations of the facility parameters for the item and the values of latent traits,
considering an no time limit (tj = 0). In other words, we present the distribution
curves of yij for different values of βj and θi. In particular, in Figure 1(a), we fix
the value of the latent trait θi = 0.5 and vary the values of the facility of the item
βj = (0.2; 0.5; 0.9). In contrast, in Figure 1(b), we fix the value of the item βj = 0.8
and we vary the values of the latent trait θi = (−1.5; 0, 1.5). Considering Figure
1(a), we observe that given a latent trait value, the expected value of the response
variable µij is higher if the item is easier. Likewise, in Figure 1(b), given a facility
value of the item, the expected value of the response variable µij is higher if the
individual has a greater latent trait.

The RPC model assumes the property of conditional independence, that is,
for individual i, the responses yij corresponding to the items j are conditionally
independent given the values of the latent trait of the individual, θi. In addition,
the model assumes independence between the responses of different individuals. So,
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Figure 1 - Distribution of yij for different combinations of parameters on the RPC
model.
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letting β = (β1, · · · , βk)
>

, θ = (θ1, · · · , θn)
>

and t = (t1, · · · , tk)
>

, considering the
model’s assumptions and equation (1), the likelihood function is given by:

L (β,θ | y, t) =

n∏
i=

k∏
j=1

µ
yij
ij e
−µij

yij !
with µij = eβj+θi+tj . (3)

Several methods exist to estimate the parameters of the RPC model
(VERHELST and KAMPHUIS, 2009), such as conditional maximum likelihood
(CML), joint maximum likelihood (JML), and marginal maximum likelihood
(MML), among others (BAGHAEI and DOEBLER, 2019). Some authors, like

Jansen and Duijn (1992), impose the constraint
∑k
j=1 βjtj = 1, which is added

to identify the model when using the estimation procedure of marginal maximum
likelihood (JANSEN and DUIJN, 1992). Also, Jansen (1994) proposed the use of a
distribution for latent traits within an EM algorithm, θi ∼ N

(
0, σ2

)
. Using this

specification and the formulation of additive effects (equation 2), the RPCM can be
seen as a generalized linear mixed model, in which we consider θi as the individual
random effects, βj the fixed effect associated with the items and tj an offset, that
is, a known constant added to the regression equation.

3 Bayesian Inference and Residual Analysis

To obtain the estimates of the parameters of the RPC model, we consider
a Bayesian approach and propose priors for θi and βj in order to obtain the
posterior distribution of these parameters. In this context, we propose the use
of the integrated nested Laplace approximation (INLA) approach developed by
Rue, Martino and Chopin (2009). The INLA method is a deterministic approach
to Bayesian inference in a wide structure of latent Gaussian models, including
generalized linear mixed models (RUE et al., 2017), in which the response variable
Yij , with a mean of µij , is linked to the additive structure of the linear predictor ηij
through a link function g(·), such that g(µij) = ηij . The use of INLA for the RPC
is very convenient because the Gaussian models are part of the exponential family.

The additive structure of the RPC model given by (2), as already mentioned,
can be adapted as a mixed Poisson regression model and therefore can be written
using a hierarchical structure:

Yij | θi, βj , tj ∼ Poisson(µij)

log(µij) = ηij

ηij = βj + θi + tj (4)

θi | σ2
θ

iid∼ N
(
0, σ2

θ

)
; σ−2θ ∼ Gamma

(
1, 10−5

)
; i = 1, · · · , n

βj
iid∼ N (0, 1000) ; j = 1, · · · , k

where σ−2θ = τθ is the precision parameter.
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Residuals carry important information for checking the assumptions that
underlie statistical models, and therefore play an important role in data analysis.
The use of residuals allows detecting discrepancies of some specific observations of
the model, in addition to providing an overview in terms of goodness-of-fit. For the
Poisson model, Pearson residuals are commonly used (BAGHAEI and DOEBLER,
2019).

rij = (yi − µ̂ij) µ̂−1/2ij (5)

where µ̂ij = Ê[Yij ] is the posterior mean of Yij , obtained using µ̂ij = exp{β̂j+θ̂i+tj}
with θ̂i and β̂j being the a posterior means of the latent trait and the facility of the
item, respectively.

In this paper, we propose the use of randomized quantile residuals (DUNN
and SMYTH, 1996) which are defined by:

qij = Φ−1 (F (yi − 1; µ̂ij) + ui.f(yi; µ̂ij)) (6)

where the terms f(·) and F (·) represent the probability mass function and
cumulative distribution function of the Poisson distribution, respectively, and ui
is a uniform distribution value in the interval (0, 1).

Pearson residuals have an asymptotically normal distribution (CORDEIRO
and SIMAS, 2009), that is, rij ≈ N (0, 1), and quantile residues have an exact normal
distribution (DUNN and SMYTH, 1996), that is, qij ∼ N (0, 1). In a well-specified
model, the residuals are expected to be concentrated around zero, evenly covering
a range of approximately −1.96 to 1.96 considering a confidence level of 95%. To
check the fit of a particular item, we present the distribution of the residuals of the
different individuals for that item using graphical methods: boxplot and violin plot.

The violin plot combines the boxplot graph and density estimation in a single
graph. In other words, it adds the available information from local density estimates
to the basic summary statistics inherent in a boxplot (HINTZE and NELSON,
1998). Thus, this combination of the density format and statistics summarized in a
single graph provides a useful tool to illustrate the model goodness-of-fit, to detect
incorrect specifications of the error distribution, and to identify the behavior of the
distribution of errors and potential items with problematic fit.

In the Appendix we show R code used in the application for the bayesian
estimation and the residual analysis for the Rasch Count Model.

4 Application

Here we illustrate the Bayesian estimation of the RPC model considering the
data presented by Baghaei and Doebler (2019), referring to a study of 228 people
on the selective attention test proposed by Beyzaee (2017). The test consists of 20
blocks with a time limit of 15 seconds to perform the task in each block, in which
the participants need to cross out the numbers 2 and 7 in three lines of randomly
arranged digits and letters. An example block is given below.
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2 G O X C 7 M J 7 H Z R N G A S 2 Y W Q 2 L H B Z G J N V 7 E T 2 P R V M J H S T Q 2 C 7 K L W C 7
X M T 7 K T R 2 A V P I W O C 2 G J 7 L S 2 B N V W 7 T O X R 2 P H 7 F D A B M 2 W H K A S T 2 O P
H W E D 2 T R N E Q X 2 P K L 7 P K 7 Z C V 7 2 Z 7 E T G H L K S D I N 7 S 2 W I S N 7 T B M O P W

Thus, the explanatory variables are: “ID”, the student’s identification number;
“Item”, referring to the block of letters and numbers that the students have to verify;
“Hit”, denoting the total number of correct checks on each item for each subject;
and “TL”, the time limit (in seconds) defined for each item. In the same manner
as Baghaei and Doebler (2019), each block is considered an item, and the total
number of correct cross-outs of 2’s and 7’s recorded as “Hit” are modeled as the
unit of analysis. Thus, we fit the RPC model as defined in equation (4) considering
the Bayesian approach. In Table 1, we show the posterior summary of the item
parameters of the test. The items range from 0.157 to 0.648, where item 2 is the
most difficult item and item 12 is the easiest, as shown in Figure 2. Values are very
close with the obtained using lme4. Data can be required directly from the authors
of the paper Baghaei and Doebler (2019).

Table 1 - Estimates: Mean (MD), Standard deviation (SD) and 95% credible
intervals (Q2.5, Q97.5) for the easily parameter of the RPC mode on
the Attention dataset

Parameter MD SD Q2.5 Q97.5
β1 0.265 0.018 0.230 0.300
β2 0.157 0.019 0.120 0.193
β3 0.427 0.018 0.391 0.463
β4 0.579 0.019 0.542 0.615
β5 0.378 0.019 0.342 0.415
β6 0.593 0.018 0.557 0.629
β7 0.455 0.019 0.418 0.492
β8 0.553 0.018 0.518 0.589
β9 0.237 0.018 0.201 0.273
β10 0.341 0.017 0.306 0.375
β11 0.552 0.018 0.516 0.587
β12 0.648 0.018 0.612 0.683
β13 0.414 0.018 0.378 0.450
β14 0.632 0.018 0.596 0.668
β15 0.263 0.018 0.228 0.298
β16 0.540 0.018 0.504 0.575
β17 0.295 0.018 0.259 0.331
β18 0.612 0.018 0.576 0.648
β19 0.342 0.018 0.306 0.378
β20 0.263 0.018 0.227 0.299

To assess model goodness-of-fit, we conduct a residual analysis using Pearson
and randomized quantile residuals. Table 2 reports the posterior descriptive
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Figure 2 - Posterior means and 95% credible intervals of item parameters as
estimated by model.

measures of both types of residuals. Considering these results, we found outliers.
Additionally, as shown in Figure 3, where lines with the value −3 and 3 have been
added, considering Pearson residuals we identified that only items 5, 13 and 15
present outlying values. Also, considering the randomized quantile residuals in
Figure 3(a), a larger number of items is identified as outliers (2, 3, 5, 9, 13, 15 and
17).
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(a) Pearson residuals.

In order to clarify the distribution of the outliers detected using randomized
quantile residuals, we report the distribution of the quantile residuals of these
items using the violin plot (Figure 4). We chose to report the results of the
randomized quantile residuals, since normal distribution behavior of these residuals
is expected, unlike the case of Pearson residuals, which only present asymptotic
normal behaviour. It is possible to show this behavior using qqplot, however, we
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Table 2 - Descriptive measureses: Mean (MD), Standard deviation (SD), Minimum
(Min) and Maximum (Max) of residuals for the RPC model applied for
the attention dataset

Items
Pearson residuals Randomized quantile residuals

MD SD Min Max MD SD Min Max
1 0.048 1.156 -2.388 2.359 0.044 1.154 -2.626 2.287
2 0.045 1.169 -2.997 2.968 0.028 1.173 -3.371 2.786
3 0.046 0.964 -2.892 2.701 0.049 0.963 -3.174 2.514
4 0.046 1.066 -2.804 2.640 0.044 1.054 -3.053 2.553
5 0.045 0.932 -4.187 2.739 0.055 0.950 -5.464 2.605
6 0.046 1.069 -2.141 2.794 0.045 1.062 -2.469 2.634
7 0.045 1.013 -2.485 2.796 0.048 1.011 -2.867 2.666
8 0.047 1.073 -2.546 2.482 0.038 1.066 -2.919 2.386
9 0.047 1.056 -2.986 2.516 0.047 1.046 -3.377 2.404
10 0.050 0.914 -2.417 1.936 0.065 0.926 -2.646 1.918
11 0.047 1.026 -2.542 2.490 0.050 1.029 -2.704 2.417
12 0.047 1.019 -2.086 2.488 0.045 1.016 -2.247 2.342
13 0.046 1.040 -3.794 2.775 0.044 1.036 -4.631 2.596
14 0.047 0.923 -2.034 2.344 0.052 0.919 -2.088 2.249
15 0.048 0.979 -4.419 2.369 0.045 1.016 -6.119 2.267
16 0.047 1.009 -2.505 2.558 0.055 1.002 -2.870 2.422
17 0.047 0.922 -2.955 2.578 0.056 0.926 -3.265 2.407
18 0.046 1.001 -2.433 2.689 0.044 1.001 -2.602 2.589
19 0.046 0.891 -1.943 2.730 0.062 0.871 -2.094 2.541
20 0.046 0.983 -1.926 2.526 0.049 0.977 -2.108 2.419

Note: the bold values denoted outliers points.
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(b) Randomized quantile residuals.

Figure 3 - Boxplot of residuals for the RPC model applied for the attention dataset.
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chose violin plot because other characteristics comparing different items could be
showed using this plot.
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Figure 4 - Violin plot of residuals of problematic items in the model.

Using the violin plot, we can not only identify the width of the residuals,
but the distribution of the residuals of the items as well. We note that items 5,
13 and 15 show serious departure from normality. These results indicate that the
proposed RPC model for the data may not be the best model. This shows the
advantages of using residual analysis. Additionally, Figure 5 shows the distribution
of the individual latent trait parameters. This distribution is approximately normal
around zero. Finally, the hyperparameter associated with the dispersion of the
latent trait parameter presents a posterior mean µ̂θ = 44.310 and a posterior
standard deviation of 4.582, indicating a small variance for the latent trait.
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Figure 5 - Distribution of the posterior mean of θi.
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5 Conclusions

In this work, we present a Bayesian approach to estimate the parameters of the
Rasch Poisson counts model, using the INLA method. This is an alternative method
to the Bayesian methods commonly used in the statistical literature, but not in the
psychometric literature. We use a specification of the RPC model as a mixed Poisson
regression model. Results, not shown here, indicated that our estimation was very
close to the estimation using glmer, a function under the approach of the generalized
linear mixed models using the marginal maximum likelihood method proposed in
Baghaei and Doebler (2019). By considering our formulation, extensions to Rasch
models as proposed by De Boeck and Wilson (2004) can be explored and easily
implemented from a Bayesian approach using the INLA method. We illustrate the
estimation method with real data from the attention test presented by Baghaei and
Doebler (2019).

Additionally, we introduce the use of randomized quantile residuals to evaluate
the fit of each item of the test. We show that Pearson and randomized quantile
residuals present discrepant information about the number of items that are not
well fitted to the RPC model. We prefer the use of randomized quantile residuals
because these residuals are normally distributed under a well-fitting model. We
show that violin plots are interesting to show the fit of the test items. Considering
the proposed method of analysis of residuals in the analyzed data, our results show
that the model is not the best model for the data, so other models such as those
of Hung (2012) and Forthmann, Gühne and Doebler (2019) can be studied in the
future with this dataset.
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RESUMO: O Modelo de contagem Rasch Poisson foi desenvolvido para identificar traços

latentes dos indiv́ıduos e facilidades dos itens em testes nos quais são modeladas as

contagens de erros (ou sucessos) em várias tarefas no tempo, ao invés de modelar

as respostas corretas a itens de um teste como no modelo teoria de resposta ao item

dicotômico. Esse tipo de modelo pode ser mais informativo que os testes tradicionais.

Para a estimação dos parâmetros do modelo consideramos a abordagem Bayesiana

usando aproximações de Laplace aninhadas integradas. Desenvolvemos uma análise de

reśıduos para avaliar o ajuste do modelo, introduzindo reśıduos quant́ılicos aleatorizados

para os itens. Os dados utilizados para ilustrar a metodologia, são provenientes de 228

examinados para um teste de atenção seletiva. O teste possui 20 blocos (itens), com

limite de tempo de 15 segundos para cada bloco. Os resultados da análise de reśıduos se

mostraram promissórias e indicaram que os dados de atenção estudados não se ajustam

muito bem ao modelo de contagem Rasch Poisson.

PALAVRAS-CHAVE: Modelo Rasch; Contagem; Poisson; Reśıduos; Atenção.
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Appendix A

R code

# DATA

attention <- read.table("Attention.txt", header = T)

head(attention)

attention$Item <- as.factor(attention$Item)

str(attention)

# FIT OF THE MODEL WITH TIME

formula <- Hit ~ -1 + f(ID,model = "iid") + Item

fit <- inla(formula, family = ’poisson’, data = attention,

E = attention$TL, control.family = list(link = "log"),

control.compute = list(dic = T, cpo = T, waic = T))

summary(fit)

##=====================================================================##

## RESIDUALS ##

RESpois <- function(inla.obj, m = 1000, plot = F, residuals = "Quantile")

{

p1 <- length(names(inla.obj$marginals.fixed))

beta <- matrix(0, nrow = m, ncol = p1)

for (j in 1:p1)

{

set.seed(123)

beta[, j] <- inla.rmarginal(m, marg = inla.obj$marginals.fixed[[j]])

}

yhat <- exp(inla.obj$model.matrix %*% t(beta))

org.formula <- inla.obj$.args$formula

yname <- as.character(org.formula)[2]

y <- inla.obj$.args$data[, yname]

ymat <- matrix(rep(y, times = m), ncol = m)

Emat <- matrix(rep(inla.obj$.args$E, times = m), ncol = m)

yhat.E <- yhat*Emat

Mymat <- apply(ymat, 1, mean)

M1ymat <- apply(ymat - 1, 1, mean)

mu <- apply(yhat.E, 1, mean)
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if(residuals == "Quantile")

{

a <- ppois(M1ymat, lambda = mu)

b <- ppois(Mymat, lambda = mu)

set.seed(123)

u <- runif(n = length(y), min = a, max = b)

resid <- qnorm(u)

}

if(residuals == "Pearson")

{

V <- mu

resid <- (Mymat - mu)/sqrt(V)

}

if(plot)

{

obs <- seq(1:length(resid))

par(mar = c(4, 4, 2.5, 0.5))

plot(obs, resid, main = NULL, ylab = "Residuals")

abline(3, 0, lty = 2, col = 2)

abline(-3, 0, lty = 2, col = 2)

}

return(invisible(list(res = resid, y = y)))

}
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