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ABSTRACT: In this paper, we proposed the Poisson-Weibull distribution for the

modeling of survival data. The motivation to study this model since, in addition to

generalizing the Weibull distribution, which is widely used in several areas of knowledge

among them the Survival and Reliability analysis, it presents great flexibility in the forms

of the hazard function. The Poisson-Weibull distribution was created in a composition of

discrete and continuous distributions where there is no information about which factor

was responsible for the component failure, only the minimum lifetime value among

all risks is observed. The maximum likelihood approach was used to estimate the

parameters of the model. Also was conducted a simulation study to examine the mean,

the bias, and the root of the mean square error of the maximum likelihood estimates of

the proposed model according to the censoring percentages and sample sizes. The model

selection criteria were also applied, in addition to graphic techniques such as TTT-Plot

and Kaplan-Meier. Application to the real data set was used to illustrate the usefulness

of the distribution.
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Piracicaba, SP, Brasil. E-mail: fabioprataviera828@gmail.com
3Universidade Federal da Bahia - UFBA, Instituto de Matemática e Estat́ıstica, CEP: 40170-110,
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1 Introduction

In several applications of statistics, the response variable consists of the time

until the occurrence interest event, and this time is generally called failure time

or survival time. In studies of failure time, is common the presence censored

observations and which consists of incomplete observation of the time of interest.

Data with censored observations are present in several areas, such as public

health, actuarial science, biomedical studies, demography, reliability, among others.

For example, in animal science, according to Cardoso et al. (2009), several

characteristics of importance economic show censored data, that is, that are not

fully observed for all animals at the time of genetic evaluation. Characteristics such

as longevity, prolificacy, and total female productivity are examples of censored

data, because many animals are still reproducing at the time of evaluation and,

therefore, only the lower limit of their phenotypic value is known. Records of these

characteristics are considered as censoring and excluding these records from analysis

or manipulating them as uncensored would yield biased results (GUEDES, 2014).

Some statistical techniques used in animal science, such as linear or generalized

linear mixed model, may not consider the censored observations during the

modeling, which can affect in the inference process. In survival analysis data

modeling, the most of procedures lead to consideration of the non-informative

censoring, i.e, censoring time distribution do not carry any information about the

failure time distribution to parameters estimation (DOS SANTOS JUNIOR, 2012).

The non-informative censoring condition was considered in this work.

Several probability distributions can be used to model the survival time

distribution, but despite the existence in the literature of several of these

distributions, the demand for new distributions is justified by the fact that the

usual models such as the exponential, Weibull (WEIBULL, 1958), log-logistic

(VERHULST, 1938), and Gamma (THOM, 1947) distributions, which are an of

the bigger distributions used in survival and reliability area, often do not fit well

with the actual data set under analysis. In this context, new distributions arise

from distributions most used in the literature, as the Weibull distribution, because

this one does not provide a reasonable fit for modeling of data with non-monotone

hazard functions such as the bathtub shaped and the unimodal hazard functions

which are common in reliability and biological studies (BARRETO-SOUZA et al.,

2008).
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Various methods have been studied in the literature to generate new

distributions. Marshall and Olkin (1997) presented a method for adding a parameter

with application to the exponential and Weibull distributions. Another form to

create new distributions is through the composition of discrete with continuous

distributions. This procedure to create new probability distributions starts from

the fact that it is not always possible to observe the exact value of the survival

time, but the minimum or maximum value of this times. This occurs, for example,

when the interest is to observe the lifetime of a system in series or in parallel where

the observed time depends on the duration of a component set.

In recent years, several authors considered this approach to create new

distributions, among them we can cite Adamidis and Loukas (1998) that proposed

the exponential geometric distribution (EG) which was created through the duration

of a series system. Specifically, it is considered that both the number and the

identification of the components that caused the failure are not observable, but only

the value of the minimum lifetime among them, where the number of components

follows a geometric distribution and the time of duration of each component follows

an exponential distribution. Following the same idea as EG distribution, Kus

(2007) introduced the exponential-Poisson distribution (EP) inserted also in a

serial system. Chahkandi and Ganjali (2009) introduced exponential power series

(EPS), which contains the distributions cited EG, EP, and logarithmic exponential

as special cases. Barreto-Souza et al. (2008) propose the Weibull-geometric

distribution (WG) that generalizes the EG and Weibull distributions. Louzada

et al. (2011) introduced the complementary exponential geometric distribution

(CEG) that generalizes the EG distribution where the motivation is the duration

of a system in parallel on what only the maximum lifetime for all risks is known.

Yamachi et al. (2013) presented the exponentiated complementary exponential

geometric (ECEG) distribution which is a generalization of the CEG distribution.

Louzada et al. (2012) and Louzada et al. (2014) propose the CEG and ECEG

distributions in long-term scenarios, respectively. Recently, Louzada et al. (2018)

introduced the beta exponentiated Weibull geometric distribution, which contains

some distributions as particular cases.

Thus, trough the considerations mentioned we used in this paper the Poisson-

Weibull distribution (PW) defined by Bereta et al. (2011), presenting as an original

contribution the modeling of data with censored observations via a simulation study

to some levels of censuring besides the application of these data. The choice of PW

model, in addition to generalizing the Weibull distribution, which is one of the most

used distributions in the area of survival and recent years is applied to data in the
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unit interval (MAZUCHELI et al., 2020), presents great flexibility in the forms of

the hazard function. This paper is organized as follows. In Section 2, we present

the PW distribution. The inferential procedure based on the maximum likelihood

approach is introduced in Section 3. In Section 4 we shown the selection criteria. A

simulation study to assess the performance of the PW model parameters estimates

is presented in Section 5. In Section 6, the data set is analyzed, and the final

remarks appear in Section 7.

2 The Poisson-Weibull distribution (PW)

The PW distribution proposed by Bereta et al. (2011) was created in the

scenario in which it is considered that both the number of components and the

identification of the component that caused the failure are not observable. On

the other hand, the value of the minimum lifetime among them is registered. In

this case, the number of components follows a Poisson distribution and the time

of duration of each component follows a Weibull distribution. However, the PW

distribution can be used in any other situation that fits well with the data according

to the criteria used. The density function is defined by

f(t) =
α exp {α exp [− (βt)

γ
]− (βt)

γ}βγtγ−1γ

exp(α)− 1
, (1)

where t > 0, β > 0 is scale parameter, α > 0 and γ > 0 are shape parameters.

The quantile, survival and hazard functions corresponding to (1) are given by,

respectively,

t = Q(u) =
[log (α)− log {log {exp (α) (1− u)}+ u}]1/γ

β
, (2)

S(t) =
exp {α exp [− (βt)

γ
]} − 1

exp (α)− 1
, (3)

and

h(t) =
α exp {α exp [− (βt)

γ
]− (βt)

γ}βγtγ−1γ

exp {α exp [− (βt)
γ
]} − 1

. (4)
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Figure 1 - Plots of the hazard function for PW distribution.

Figure 1 illustrates some of the possible shapes of the hazard function (4) for

selected parameter values. Note in this figure, that the hazard function is quite

flexible and can accommodate various forms, such as increasing, decreasing and

unimodal. Applications of the PW distribution in survival studies for data without

censored observations were investigated by Bereta et al. (2011).

3 Maximum likelihood estimation

Several methods can be used to estimate the probabilistic models parameters,

and the most common is the maximum likelihood. One of the characteristics of this

method is which allows the inclusion of censoring in its estimation process, which is

not always possible with other estimation methods, for example, the least-squares

method.

Maximum likelihood for PW distribution

Given a random sample of the size n composed by (t1, δ1), (t2, δ2), . . . , (tn, δn) where

ti = min(Ti, Ci), T represents the survival time and C consists of the censoring

time, which is independent of T . For each i = 1, . . . , n, the variable Ti has PW

distribution with vector of parameters θ = (α, β, γ)T and δi a random variable

of censoring indicator, where the values 0 or 1 represent the censured or observed

data, respectively. Consider the density and survival functions given by (1) and (3)

respectively, the log-likelihood function `(θ) for the parameter vector θ, where the

survival and censure times are independent and censure is non-informative, can be

expressed as
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`(θ) ∝
n∑
i=1

δi log(αγβγtγ−1
i ) +

n∑
i=1

δi [α exp {− (βti)
γ} − (βti)

γ ]−
n∑
i=1

δi log(exp(α)− 1)+

+

n∑
i=1

(1− δi) log {exp {α exp [− (βti)
γ ]} − 1} −

n∑
i=1

(1− δi) log(exp(α)− 1).

(5)

Maximum likelihood estimates (MLEs) for parameter vector θ can be obtained

by maximizing (5) from the resolution of the system of equations U(θ) =
∂l(θ)

∂θ
= 0.

The components of the score vector U(θ) of the PW distribution are given by

∂`(θ)

∂α
=

∑n
i=1 δi +

∑n
i=1 δi exp {− (βti)

γ}
α

−
∑n
i=1 δi exp(α)

exp(α)− 1
+

+

n∑
i=1

(1− δi)
(exp {α exp {− (βti)

γ}}) exp {−(βti)
γ}

(exp {α exp {− (βti)
γ}} − 1)

+

∑n
i=1(1− δi)

exp(α)− 1
.

∂`(θ)

∂β
=

n∑
i=1

δi
γ

β
+

n∑
i=1

δi

(
−α(βti)

γγ exp {−(βti)
γ}

β
− (βti)

γγ

β

)

−
n∑
i=1

(1− δi)
α(βti)

γγ (exp {α exp {− (βti)
γ}})

β (exp {α exp {− (βti)
γ}} − 1)

.

∂`(θ)

∂γ
=

n∑
i=1

δi
αβγtγ−1

i + αγβγ log(β)tγ−1
i + αβγtγ−1

i log(ti)

αγβγtγ−1
i

+

+

n∑
i=1

δi (−α(βti)
γ log(βti) exp {− (βti)

γ} − (βti)
γ log(βti))

−
∑n
i=1(1− δi)α(βti)

γ log(βti) exp {α exp [− (βt)
γ
]− (βt)

γ}
(exp {α exp {− (βti)

γ}} − 1)
.

Since there is no closed analytical way to find these estimators, we can use

numerical methods for solving the system of equations. Thus, estimates of these

parameters were obtained by numerical methods, using an iterative process. We

used the command optim in software R through of the method BFGS.
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4 Selection criteria

For the selection of the model that best fits the data, were used the criterion’s:

Global deviance (GD); AIC (Akaike’s information criterion), and BIC (Bayesian

information criterion). The GD, AIC, and BIC measures are defined by

GD = −2`(θ̂); AIC = GD + 2p; BIC = GD + 2 log(n),

where `(θ̂) is the maximized log-likelihood function, p is the number of parameters

of the model and n is the sample size. Besides these criterions, hypothesis test, such

as the likelihood ratio test (LR), can be taken into account due the WP distribution

has other distributions such as particular cases. For test nested distributions, we

compute the maximum values of the restricted (H0) and unrestricted (H1) log-

likelihoods to construct the test statistic. Under H0 and some regularity conditions,

the distribution of the statistical likelihood ratio converges to a χ2 distribution with

degrees of freedom equal to the difference between the numbers of parameters of

the unrestricted and restricted models.

For the comparison of the models in the boundary of the parameter space,

for example, H0 : α → 0 and H1 : α > 0, the distribution of the statistical test

ωn is a mixture with a weight (0.5 and 0.5) of distribution χ2 with one degree of

freedom, with a discrete distribution and with mass concentrated in the value 0,

this is, P (ωn ≤ w) = 1
2 + 1

2P (χ2
1 ≤ w). Large positive values of ωn give favorable

evidence to the unrestricted model. For example, for a significance level of 5%, H0

is rejected if ωn > 2.7055. More details in Maller et al. (2011).

5 Simulation study

To examine the performance of MLE’s for the parameters of the PW distribution,

a simulation study was made for different values of n and censored observations

in each sample. In this study, were generating 1000 random samples simulated

with the support of the software R. The values of the PW variable were generated

from the inverse transformation method, where the parameter values were fixed

in α = 1.0, β = 2.0, γ = 3.0 and the censoring times C were sampled from the

Uniform distribution in the interval (0, τ), where the τ assisted in the control of the

censoring observations. Besides, the censoring percentages were considered equal to

0% (τ = 50.0), 10% (τ = 3.6) and 20% (τ = 2.0) and the survival time observed of

the variable in the simulation was considered through t∗i = min(ti, ci). The process

of this simulation is as follows:
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1. Generate ui ∼ U(0, 1);

2. Determine ti = F−1(ui) = (log(α)−log(log(exp(α)(1−ui)+ui)))1/γ
β ;

3. Generate variable of censure ci; C ∼ U(0; τ);

4. Find t∗i = min(ti, ci);

5. If ti < ci then δi = 1, otherwise, δi = 0, to i = 1, ..., n.

For each combination of n, B = 1000 samples were generated and obtained the

maximum likelihood estimates of the PW distribution by optim via the method

BFGS.

The bias and the square root of the mean-squared error (RMSE) of the

maximum likelihood estimates were also calculated. The formulas of bias and RMSE

are defined as

Bias =

 1

B

B∑
j=1

θ̂j

− θ

 and RMSE =

√√√√ 1

B

B∑
j=1

(
θ̂j − θ

)2
,

where θ̂j represents the maximum likelihood estimative of the parameter vector θ

for the j-th replication, j = 1, . . . , B.

From the simulation results, shown in Table 1, it was observed that the

estimates of the parameters of the PW distribution were close to the true value of the

parameters and the RMSEs decay toward zero when the sample size n increases, as

expected. In addition, the RMSE increased as the censoring percentages increased.
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Figure 2 - Plots of simulation for PW distribution. (a) For α. (b) For β. (c) For γ.
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Table 1 - Mean, Bias and RMSE of the estimates of the parameters of WP

distribution with α = 1.0, β = 2 and γ=3.0 for the percentage of censured

(0%, 10% and 20%)

0% 10% 20%

n θ Mean Bias RMSE Mean Bias RMSE Mean Bias RMSE

α 1.2369 0.2369 1.3861 1.3042 0.3042 1.4415 1.2918 0.2918 1.4539

150 β 1.9886 -0.0113 0.2287 1.9723 -0.0276 0.2358 1.9805 -0.0194 0.2427

γ 3.0101 0.0101 0.2540 3.0089 0.0089 0.2535 2.9991 -0.0008 0.2660

α 1.1522 0.1522 1.1767 1.1627 0.1627 1.2231 1.2471 0.2471 1.4758

300 β 1.9921 -0.0078 0.1934 1.9884 -0.0115 0.1996 1.9829 -0.0170 0.2297

γ 2.9900 -0.0099 0.1976 3.0002 0.0002 0.2096 2.9951 -0.0048 0.2031

α 1.1166 0.1166 1.1048 1.0867 0.0867 1.1824 1.1662 0.1662 1.1567

450 β 1.9953 -0.0046 0.1757 2.0047 0.0047 0.1865 1.9864 -0.0135 0.1911

γ 2.9886 -0.0113 0.1767 2.9776 -0.0223 0.1812 2.9877 -0.0122 0.1885

α 1.0532 0.0532 0.8579 1.0475 0.0475 0.8525 1.1174 0.1174 1.0411

600 β 2.0008 0.0008 0.1521 2.0054 0.0054 0.1552 1.9934 -0.0065 0.1764

γ 2.9899 -0.0100 0.1575 2.9878 -0.0121 0.1676 2.9894 -0.0105 0.1623

As the results of the maximum likelihood estimates using the BFGS algorithm

were satisfactory, we did not verify other iterative methods to estimate parameters

of the PW distribution, such as the EM algorithm.

6 Application

The purpose of this section was to verify the applicability of the PW

distribution on a dataset extracted from the literature where there are censored

observations. The data set was extracted from the book of the Lee and Wang

(2003, p.231) and refers to the survival time of 137 bladder cancer patients in which

the interest is to study the time until their remission, where 7% of the patients are

censored. Bladder cancer is one of the most common cancers of the urinary tract

and one of the most incident in the world. In addition to smoking, white and elderly

man present the most probability to develop this disease1.

Initially, to obtain more information on the survival time of the bladder cancer

patients, it was made an analysis of these times without considering the censored

observations. In this case, see results in Table 2. Note that the median time

of remission of the patients was approximate of 6 months, which indicates that

1https://www.inca.gov.br/tipos-de-cancer/cancer-de-bexiga
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approximately 50% of patients had the survival time larger than 6 months and its

mean survival time was 9 months. It can also be observed that 25% of patients had a

lifetime approximately less than 3 months or greater than 11 months. Furthermore,

the lifetime of the patients was between 0.0800 and 79.0500 months, which implies

a greater variability of the lifetime.

Table 2 - Summary of survival time of the patients for the bladder cancer data

Minimum 1o Quartile Median Mean 3o Quartile Maximum Standard deviation

0.0800 3.3600 6.2500 9.3430 11.7900 79.0500 10.3421

Table 3 gives a descriptive summary of these data based on Kaplan-Meier

method. This table presents the values of the median and its respective 95%

confidence interval. The percentage of censored observations for survival times

is 7%.

Table 3 - Descriptive statistics by Kaplan-Meier for bladder cancer data

n Event Censored Median
95% CI

2.50% 97.50%

137 128 9 6.93 5.34 7.93

In addition, we present in Figure 3 an empirical analysis of the behavior of the

hazard function of the bladder cancer data. The graphical method based on the total

time test (TTT), called of TTT-Plot (AARSET, 1987), was used to verify the hazard

function on observed times of the cancer patients. This method is advantageous

when there is information on the hazard function of the studied variable. According

to AARSET (1987), the empirical version of the TTT plot is defined as G(r/n) =

[(
∑r
i=1 Yi:n) − (n − r)Yr:n]/(

∑r
i=1 Yi:n), where r = 1, . . . , n and Yi:n represent the

order statistics of the sample. AARSET (1987) showed that the hazard function is

constant if the TTT plot is presented graphically as a straight diagonal, the hazard

function is increasing (or decreasing) if the TTT plot is concave (or convex). The

hazard function is U-shaped if the TTT plot is convex and then concave, otherwise,

the hazard function is unimodal. The TTT-Plot related to bladder cancer data in

Figure 3 (b) reveals a unimodal shape since the plot shows a first concave and then

convex curvature. So, we can try using the PW distribution for the modeling of

data because this distribution assumes some forms of the hazard function, among

them, the unimodal.
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Figure 3 - Plots for bladder cancer data: (a) Kaplan-Meier; (b) TTT-Plot.

Table 4 shows the maximum likelihood estimates (MLE’s) with selection

criteria (GD, AIC and BIC) and standard errors for the parameters of PW

distribution with their particulars cases: exponential-Poisson (γ = 1); Weibull

(α → 0); exponential (γ = 1 and α = 1). It can be observed that the PW

distribution had the lowest value of the GD and AIC in relation to the other

distributions, indicating that this model is more appropriate to the data.

Table 4 - Selection criteria and MLEs of the model parameters: exponential (E),

exponential-Poisson (EP), Weibull (W) and Poisson-Weibull (PW) for

bladder cancer data
E EP W PW

θ Estimates E.P. Estimates E.P. Estimates E.P. Estimates E.P.

α - - 9.934 4.235 - - 3.939 1.749

β 0.100 0.008 0.011 0.005 0.098 0.008 0.038 0.014

γ - - - - 1.053 0.068 1.262 0.085

GD 845.4 844.8 844.8 837.7

AIC 847.4 848.8 848.8 843.7

BIC 850.3 854.6 854.6 852.5

As the PW model is reduced in sub-models, the likelihood ratio (LR) test was

used to verify if any sub-models fit better than the PW distribution. The values

of LR test are presented in Table 5. Analyzing this Table, it can be observed

that the PW distribution was favorable in all three hypothesis tests, thus this

distribution was considered to be the most appropriate to the data. These results

are corroborated by the plot in Figure 4, which shows the fitted survival function of

PW distribution closed to the empirical Kaplan-Meier (Figure 4a) and fitted hazard
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function (Figure 4b).

Table 5 - LR tests for the bladder cancer data
Models Hypotheses Statistic ωn p-value

PW vs EP H0 : γ = 1 vs H1 : H0 is false 7.6710 0.0056

PW vs Weibull H0 : α→ 0 vs H1 : H0 is false 7.0406 0.0065

PW vs exponential H0 : γ = α = 1 vs H1 : H0 is false 7.6710 0.0215
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Figure 4 - Kaplan-Meier curve with the survival and hazard functions estimated of

the PW distribution for the bladder cancer data.

From the considerations mentioned, the PW model was considered as the most

appropriate for the bladder cancer data. Thus, the final model has the survival

function given by

S(t) =
exp

{
3.939 exp

[
− (0.038t)

1.262
]}
− 1

exp (3.939)− 1
, (6)

where t > 0 represents the lifetime of the patients with bladder cancer. According

to equation (6), it is possible to get some information for the bladder cancer data:

• The probability that a patient with bladder cancer will not have a remission

of the disease after 4 months is given by

S(4) =
exp

{
3.939 exp

[
− (0.038(4))

1.262
]}
− 1

exp (3.939)− 1
= 0.6939

516 Rev. Bras. Biom., Lavras, v.39, n.4, p.505-521, 2021 - doi: 10.28951/rbb.v39i4.534



This value indicates that the chance of a patient present evidence of the disease

after 4 months is approximately 70%.

• The probability that a patient with bladder cancer will not have a remission

of the disease after 12 months is given by

S(12) =
exp

{
3.939 exp

[
− (0.038(12))

1.262
]}
− 1

exp (3.939)− 1
= 0.2735

This value indicates that the chance of a patient present evidence of the disease

after 12 months is approximately 27%.

• The median time , which can be estimated via the quantile function, is given

by equation (2). Thus, the median time value:

t = Q(0.50) =
[log (3.939)− log {log {exp (3.939) (1− 0.50)}+ 0.5}]1/1.262

0.038
= 6.8599

7 Final remarks

In this paper, the Poisson-Weibull distribution with the presence of censored

observations was used to analyzis data. This distribution was created in a

composition of discrete and continuous distributions, where there is no information

about which factor was responsible for the component failure, only the minimum

lifetime value among all risks is observed. Different simulation studies were adopted

to study the means, the biases, and the root of mean squared error of the ML

estimates of the proposed model for different values of n and censored observations

where it was verified good results. Finally, an application of the PW distribution was

presented as an alternative for the fit the bladder cancer data. Through graphical

analysis of the TTT-Plot and Kaplan-Meier, the observed values of the GD, AIC,

and BIC criteria, and the likelihood ratio test, it can be noted that the PW model

fitted well to the data. Thus, it is expected that this model is useful for fitting

other datasets that present some forms of the hazard function, among them, the

unimodal.

Acknowledgments

We would like thanks CNPq Scholarship - Brazil (166774/2020-0) and the

reviewers and editors for their comments and suggestions.

Rev. Bras. Biom., Lavras, v.39, n.4, p.505-521, 2021 - doi: 10.28951/rbb.v39i4.534 517
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RESUMO: Neste artigo, propomos a distribuição Poisson-Weibull para a modelagem

dos dados de sobrevivência. A motivação para estudar este modelo é que, além de

generalizar a distribuição Weibull, que é amplamente utilizada em diversas áreas do

conhecimento entre elas a análise de sobrevivência e confiabilidade, apresenta grande

flexibilidade nas formas da função de risco. A distribuição Poisson-Weibull foi criada

em uma composição de distribuições discreta e cont́ınua onde não há informação sobre

qual fator foi responsável pela falha do componente, apenas o valor mı́nimo de vida entre

todos os riscos é observado. A abordagem de máxima verossimilhança foi usada para

estimar os parâmetros do modelo. Também foi realizado um estudo de simulação para

examinar a média, o viés e a raiz do erro quadrático médio das estimativas de máxima

verossimilhança modelo proposto de acordo com os percentuais de censura e tamanhos

da amostra. Critérios de seleção de modelos também foram aplicados, além de técnicas

gráficas como TTT-Plot e Kaplan-Meier. Uma aplicação ao conjunto de dados foi usada

para ilustrar a utilidade da distribuição.

PALAVRAS-CHAVE: Análise de sobrevivência; composição de distribuições; dados

censurados; seleção de modelos.
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Supplementary material

#########################################

############# PW Functions #############

#########################################

# Density function

dPW <- function(x,alpha,beta,gamma){

pdf <- ((alpha*gamma*(beta^gamma))/(exp(alpha)-1))

*(x^(gamma-1))*exp(-(beta*x)^gamma)*exp(alpha*(exp(-(beta*x)^gamma)))

}

# Survival function

sPW <- function(x,alpha,beta,gamma){

s <- (exp(alpha*exp(-(x*beta)^gamma))-1)/(exp(alpha)-1)

}

# Hazard function

hPW <- function(x,alpha,beta,gamma){

h <- dPW(x,alpha,beta,gamma)/sPW(x,alpha,beta,gamma)

}

##################################################

############# Log-likelihood Function ############

##################################################

log.L <- function(parameter){

alpha <- parameter[1]

beta <- parameter[2]

gamma <- parameter[3]

dens.pW <- ((alpha*gamma*(beta^gamma))/(exp(alpha)-1))

*(time^(gamma-1))*exp(-(beta*time)^gamma)*

exp(alpha*(exp(-(beta*time)^gamma)))

surv.pW <- (exp(alpha*exp(-(time*beta)^gamma))-1)/(exp(alpha)-1)

l.vero <- -sum(delta*log(dens.pW)+(1-delta)*(log(surv.pW)))

return(l.vero)

}

##################################################

############# Maximization by optim ##############

##################################################

results <- optim(c(3.93962349, 0.03874076, 1.26282809),

log.L,method = "BFGS",hessian=TRUE)

results
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