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ABSTRACT: Missing data are common in multi-environmental experiments however

sophisticated they are. Thus, it is essential to use appropriate methods of analysis to

reduce the impact generated by the loss of information. Data imputation consists in

one of the most common techniques used to overcome the problem of missing values,

it estimates missing data by plausible values; subsequently, the analyses are carried

out on the complete data. This work aims to propose a new multiple imputation

method for data from multi-environment trials, resulting from the proposal based

on the simple residuals of a linear regression model. Alterations were made in the

simple imputation algorithm EM-AMMI to accommodate the additive main effect and

generalized multiplicative interaction GAMMI. The quality of the multiple imputations

method was evaluated by using accurate general statistics distributions, which combines

the variance among imputation and mean square deviation, and normalized root mean

square error (NRMSE). For such, simulations of random values at levels of 10%,

20%, 30% and up to 40% were performed from two real data set and the obtained

corresponding imputations. The overall mean accuracy and NRMSE results, given the

low values obtained, considering the proposed method, demonstrate the high quality of

the proposed multiple imputation algorithm MIGAMMI.
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1 Introduction

Though multi-environment trials are planned to be balanced, missing values
may occur, whether due to control failure, human errors, or natural conditions, such
as excessive rains, plague attacks, animal invasion, etc (ARCINIEGAS-ALARCON
et al., 2020; YAN, 2013; RODRIGUES et al., 2011; BERGAMO, 2007). Missing
data produce unbalanced trials that prevent data from being directly analyzed
by effective traditional statistical methods. A typical example are the cultivars
studied in different environments, in which the variable response is the mean of
repetitions in each combination of level factors. In such trials, the additive main
effect and multiplicative interaction are the best analysis approach, provided the
variable distribution response is normal, independent, and identically distributed
(RODRIGUES et al., 2016; HADI et al., 2010). However, under the existence of
missing data, the applicability of models AMMI is unviable (GAUCH; ZOBEL,
1990; YAN, 2013).

Several strategies are applied to solve the problem of missing values, which
commonly occur in many types of multi-environment trials, for instance, by deleting
rows or columns that present missing values, to obtain a balanced subset; by filling
in missing data through environmental means (input column) or through estimates
obtained by any method, such as linear models or multiplicative mixed model. Each
of these procedures can be used, but none of them are simple or entirely effective.
The first one produces even more losses, since during the obtaining of the complete
subset, it tends to eliminate other values, dramatically reducing the sample, which
may result in deviation of patterns. The second one may not be adequate since
missing values may occur. The third one is rather complex and involves several
stages, whether in algebraic field or in computationally implementation (YAN,
2013).

Some of the works well accepted in filling in missing data in multi-environment
trials are the methods of imputation that employ singular value decomposition
(SVD) of a matrix, such as the algorithm EM-AMMI presented by Gauch and Zobel
(1990), in which the authors introduce the additive main effect and multiplicative
interaction (AMMI) in algorithm EM (Expectation-Maximization) to perform
imputation. In this algorithm, the best results are achieved by including few
multiplicative terms in AMMI model (PIEPHO, 1995; ARCINIEGAS-ALARCON;
DIAS, 2009; ARCINIEGAS ALARCON et al., 2014; PADEREWSKI et al., 2014).
Also, the algorithm EM+SVD presented by Perry (2009), the distribution-free
multiple imputation (DFMI) by Bergamo et al. (2008), a method with no restriction
on patterns or data missing mechanism and free of assumptions about distribution
or data structure, the Biplot imputation method described by Yan (2013) and others
of equal importance who use SVD.

Imputation is the process of filling in missing data with plausible values for
subsequent analysis. In general, the methods of imputation are classified in single
imputation and multiple imputation (MI). In single imputation, missing data are
imputed only once and then the completed data are analyzed as if there were
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no missing values. As it occurs a single time, it is not possible to quantify the
uncertainty associated to imputations, which might be a constraint of the single
imputation (ENDERS, 2010; BERGAMO, 2007). In multiple imputation, missing
values are replaced by m values, creating m datasets with imputed values (RUBIN,
1978, 1987). Usually, multiple imputation (MI) consists of three stages: imputation
of missing values, analysis of m datasets created, and combination of results created
in m analysis (ZHANG et al., 2003; SCHOMAKER; HEUMANN, 2018). In
MI, imputation certainties are incorporated to the results, which makes MI more
attractive and efficient for filling in missing data (BERGAMO et al., 2008; VAN
GINKEL et al., 2019).

Despite the existence, for decades, of methods that deal with missing values,
this issue is yet not fully addressed, leading many researchers not to utilize
appropriate methods. Due to lack of knowledge, in most cases, they utilize simple
approaches of deletion or replacement (PEUGH and ENDERS, 2004). Similar
results to Peugh and Enders (2004), were presented by Rousseau et al. (2012), who
observed that, in over one-third of the reviewed works, it was found no indication
of missing values; yet, in half of the works in which missing data were reported,
the adopted method was not understandable; and among the correct ones, the
majority merely performed simple deletion of observations. According to the author,
researchers only use these methods as they are standard statistical packages.

Suitable procedures of imputation are far more advantageous than a simple
elimination of missing units, since the maintenance of the entire sample might
help preventing the increase of errors caused by the reduction of sample size,
completed data may be analyzed by efficient classic methods available in usual
statistic programs. Furthermore, if data is to be analyzed by distinct individuals,
one imputation before analysis will guarantee that the same dataset will be used by
each one, which enables comparisons of results. On the other hand, the imputation
might not be well implemented, some methods might present deficiencies, being
disadvantageous (SCHAFER and GRAHAM, 2002).

Therefore, by presenting the literary aspects about data imputation in multi-
environment trials, we aim to propose an algorithm of multiple imputation based
on an extension of EM-AMMI method and the simple residual of linear regression
model, a combination of the generalized additive main effects and multiplicative
interaction model (GAMMI) with an algorithm EM and the simple residual of
linear regression.

2 Materials and methods

2.1 Algorithm of single imputation EM-GAMMI

To carry out data imputations based on EM-GAMMI procedure, in trials
with genotype-by-environment interaction or G×E, modifications were performed
in the algorithm EM-AMMI: 1) the additive main effects and multiplicative
interaction model (AMMI) was replaced by the generalized additive main effects and
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multiplicative interaction model (GAMMI), enabling the algorithm to model other
distributions, besides normal distribution, such as, Poisson, binomial, among others;
2) the singular value decomposition (SVD) was suppressed, the imputed values are
then obtained directly from the adjustment of GAMMI model with k multiplicative
terms; in this paper, consider k = 0, 1, 2. The procedure of modification was
viable due to the algorithm Van Eeuwijk (1995), which uses Nelder e Wedderburn
(1972) approach of generalized linear models (GLM), as a basis for estimating the
generalized AMMI model. According to Amoêdo (2021), the stages of functioning
of the imputation algorithm, named EM-GAMMI, are described as follows:

Step 1 - Missing elements [xm
ij ] of X are initially estimated by the observed overall

mean values, plus the mean in row i (row main effect), plus mean in column
j (column main effect), obtaining a full matrix X. The initial filling is also
possible by using an arbitrary value. In this article, means were employed to
estimate the initial missing values.

Step 2 - A particular GLM with a specific link function is defined, then the
parameters of the model GAMMI are estimated. Complete column entries
of X are considered as an environment factor and entry rows as effect of
genotype factor for the adjustment. The generalized AMMI model (GAMMI)
for the mean response µij in terms of linear prediction, as described in (1),

ηij = µ+ αi + βj +

K∑
k=1

√
λkγikδjk (1)

where µ is a general mean, αi e βj represent rows and columns effects, γik
and δjk are row and column values for the kth multiplicative component of
the interaction terms,

√
λk means the singular values of k-th component, and

K is the number of multiplicative terms

Step 3 - The adjusted mean is calculated based on the model GAMMI with k
multiplicative terms. Depending on the number of multiplicative terms used,
the imputation method can be nominated EM-GAMMI-0, EM-GAMMI-1,
EM-GAMMI-2, . . ., EM-GAMMI-K.

Step 4 - Missing values (xm
ij ) in X are filled in (imputed) by appropriate EM-

GAMMI estimates, adjusted means (µ̂ij). As the relation between E(Yij)=µij

and the linear predictor ηij does not occur in a direct way in the generalized
linear model, they are united by the link function, the predicted values are
returned to data scale utilizing g−1(ηij). Notice that g(·) is a function that
links the mean E(Yij) = µij to the linear ηij . If the link function is the
identity, the model in (1) is the model AMMI itself. The expression in (2)
shows the obtaining of (µij).

g(µij) = ηij ⇒ µij = g−1(ηij) = E(Yij) (2)
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Step 5 - Convergence criteria: if Chebyshev’s distance between the estimation
of missing values, in two stages of successive iteration, is greater than the
assumed accuracy (used pattern 0,01), the stages from 2 to 5 shall be repeated;
otherwise, the algorithm converges and stops. The distance of Chebyshev,
considering two vectors containing p imputed values X and Y, is defined as:

d(X,Y) = max(|X1 −Y1|, |X2 −Y2|, . . . , |Xp −Yp|)

2.2 Multiple Imputation (MIGAMMI) using single residual in linear
regression model

This proposal of multiple imputation was developed on the method EM-
GAMMI, complementary to the use of simple residual in linear regression model,
presented by Srivastava e Dolatabadi (2009) and Arciniegas-Alarcón et al. (2014).
Arciniegas-Alarcón et al. (2014) carried out multiple imputation based on the
“biplot imputation” method, using simple residual in linear regression model
Y = Qβ + E, where Y (n× 1) is the vector that represents the variable response;
Q (n × p) represents the design matrix; β (p × 1) is the vector of regression
parameters and E (n × 1) is the random error vector. In line with the authors,
missing data only occur in vector Y, the explanatory variables that compose the
model must be complete. This way, the linear regression model was rewrote as
(Y0/YA) = (Q0/QA)β+E, where Y0 (n1 × 1) corresponds to the subvector of n1

observed data, YA (n0 × 1) to the subvector that contains n0 missing values, Q0

(n1 × p) the submatrix of n1 observed data and QA (n0 × p) the submatrix of n0

missing values, so that n0 + n1 = n. Then, the multiple imputation is obtained by:
ŶAt = QA(QT

0 Q0)
−1QT

0 Y0 + Et, where t = 1, . . . ,m, represent m imputations
for each missing data; and Et refers to t-th random sample with replacement

of size n0 obtained from the residual vector e =
(

n1

n1−p

)0,5

(Y0 − Q0b1), then

b1 = (QT
0 Q0)

−1QT
0 Y0 represents the least square estimate of β, based on the

observed data.

To perform MI with simple residual, the proposed modification to the EM-
GAMMI algorithm is the following: the method EM-GAMMI provides at the end
of its process a complete matrix Xc, whose elements are the imputed values for
the respective missing data and the estimate for the observed values. Then, the
next step consists of obtaining the simple residual matrix via observed data, by the
difference between the original matrix and the matrix that contains the estimate of
the observed values, that is, ϵ̂ = X −Xc. As the residual is only obtained for the
observed values, the matrix ϵ̂ (n×p) is incomplete since we can only obtain residual
for (np − na) observed data. Subsequently, and based on the residual matrix ϵ̂,
t different matrices Ωt (n×p) are created, where t = 1, . . . ,m, as follows: each
element that compose Ωt is randomly chosen and the matrix ϵ̂ is replaced. The
process of random selection with replacement is repeated on ϵ̂, m times, producing
m matrices, Ω1,Ω2, . . . ,Ωm. Once obtained Ωt, the following step consists of
performing the multiple imputation, which is made when replacing the missing
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elements [xm
ij ] of matrix X, by correspondent values of each t matrices that are

construed byXc+Ωt, then the process of MI providesXc+Ω1, X
c+Ω2, . . . ,X

c+ Ωm

complete matrices. After obtaining the imputations, t complete matrices (observed
and imputed) are combined by the mean of t completed matrices, originating a single
matrix, then, the missing elements in originalX are imputed with the correspondent
obtained means.

In this paper, it was used t = 5, number of multiple imputations, since,
according to Rubin (1996), t = 5 imputations are enough to make valid inferences.
To Van Buuren (2018), t = 5 provides good quality to the method, and it is unlikely
that important conclusions are substantially altered if the limit t is higher than 5.
Therefore, it was obtained a multiple imputation with simple residuals by means of
a generalized multiplicative model, which was named multiple imputation GAMMI
(MIGAMMI).

2.3 Description of the data used in the research

To evaluate MI procedure, two real datasets were considered, complete and
derived from trials with genotype × environment interaction. The first dataset is a
randomized block design, a study based on the resistance of soybean to foliar plague,
published by Hadi et al. (2010). In this experiment, four genotypes of resultant
hybrid soybean were used (Wilis, IAC-100, IAC-80 e W-80) and, 14 days after
planting, the counting of foliar plagues in each plant was examined. After counting,
five types of foliar plagues were classified in varieties (genotypes of soybean). Table 1
presents the population mean of the five foliar plagues in four genotypes of soybean.
This dataset was particularly chosen, since the mean responses to the repetitions
are expressed in interval scale and analyzed by GAMMI methodology (HADI et
al., 2010). In this way, it was possible to use the models AMMI and GAMMI for
posterior use of imputation algorithms. This dataset was denominated foliar plague
dataset for reference purposes.

Table 1 - Population mean of the five foliar plagues in four soybean genotypes

Genotypes
Types of foliar plague

Bemissia Emproosca Agronyza Lamprosema Longitarsaus

IAC-100 0.50 1.75 2.25 0.50 1.75
IAC-80 3.00 2.75 1.00 1.75 3.25
W-80 3.50 4.00 1.25 2.00 2.00
Wilis 4.00 3.00 1.00 1.75 4.00

Source: Hadi et al. (2010)

The second dataset utilized is part of a study performed in a randomized block
design ceded by the researchers Spitti et al. (2019). In the study, 19 beans genotypes
were observed in six different environments. Genotypes were evaluated on the grains
tegument color according to the luminosity value (L), and also in relation to shelf
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growing conditions. The variable response demonstrates the genotype tolerance
(resistance) for pigment losses, that is, gradual change of grains color at 60 days.
Table 2 illustrates the genotype mean values per environment, obtained from the six
regions considered in the study. This dataset was denominated Acácia for reference
purposes.

Table 2 - Beans genotype mean evaluated on the grains tegument color according
to the luminosity

Genotypes
Regions

R1 R2 R3 R4 R5 R6

BRS Pérola 0.5041 0.4727 0.5036 0.4497 0.4840 0.4957
CHC 01-175-1 0.4987 0.4648 0.5105 0.4610 0.4747 0.5013
CNFC 11-948 0.5068 0.4703 0.5023 0.4618 0.5048 0.5110
CNFC 11-954 0.5013 0.4585 0.4867 0.4708 0.4992 0.4961
Gen 4-1F-19P 0.5263 0.5000 0.4909 0.4892 0.5241 0.5245
Gen 12-2F-67 0.5178 0.4681 0.5021 0.4790 0.5098 0.5184
Gen 20-4F-129 0.5122 0.4847 0.4844 0.4494 0.4987 0.5343
Gen 45-2F-293P 0.5244 0.4922 0.5083 0.4792 0.5326 0.5493
Gen 78-1A-59 0.5078 0.4907 0.4950 0.4717 0.5168 0.5291
Gen 86-12A-122 0.5055 0.4776 0.4907 0.4501 0.4878 0.5215
Gen 90-4A-160 0.5106 0.4692 0.4993 0.4588 0.5002 0.5228
Gen 104-1A-291 0.5314 0.4901 0.5109 0.4677 0.5197 0.5304
Gen 106-4A-317 0.5107 0.4882 0.4999 0.4497 0.5016 0.5346
Gen 106-6A-319 0.5195 0.4794 0.5014 0.4856 0.5143 0.5226
Gen 107-14A-336 0.5256 0.4777 0.5145 0.4563 0.5348 0.5552
Gen 125-10A-510 0.5123 0.4670 0.5103 0.4756 0.4987 0.5183
IAC Milênio 0.5219 0.4803 0.5063 0.4873 0.5017 0.5111
IAC Sintonia 0.5028 0.4682 0.4821 0.4588 0.4899 0.5276
LP 11-363 0.5394 0.4810 0.5201 0.4703 0.5018 0.5144

Source: Spitti et al. (2019)

2.4 Simulation procedure based on real data

Both datasets used in this study were submitted to randomized removal
simulations at 10%, 20% and 30% for foliar plague data, and at 10%, 20%, 30%
and 40% for Acácia data, since, according to Yan (2013), the number of missing
values in experiments with genotype by environment interaction is lower than 40%.
This process was repeated a hundred times for each percentage removed in both
set of values, obtaining 300 distinct matrices for foliar plague dataset and 400
distinct matrices for Acácia dataset, totaling 700 matrices with simulated missing
values. Subsequently, imputations were made for each one of the 700 matrices with
simulated missing values. For the foliar plague dataset, three randomized removals
were considered, since the matrix is small (size 4×5). Increases in removals at 40%
would imply problems of convergence and loss of information, by complete deletion
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of the row or column where they are located, among other issues.

The stages, simulations and predictions were conducted by computer routine
developed and implemented to the programming language R (R Core Team 2020). It
is worth mentioning, concerning the developed algorithm, the use of gnm function to
adjust the GAMMI model up to two multiplicative terms. For foliar plague dataset,
Poisson GAMMI and Gaussian GAMMI models were used, with their respective
logarithmic function and identity. The model Poisson GAMMI was chosen due to
the study of Hadi et al. (2010). For Acácia dataset it was used the model Binomial
GAMMI, with the logit link function, since the data represent a proportion. The
imputations were obtained by the algorithms EM-GAMMI, MIGAMMI, EM-AMMI
(using the function EM-AMMI) and EM+DVS (using the function impute.svd).
Simulations of random removal values or generation of missing data, assuming the
missing at random mechanism - MAR (Missing at Random), were carried out by
using the function SimIm from the multivariate ImputeR package.

GAMMI is one of the best models to analyze experiments with genotype ×
environment interaction, in cases in which occur violation of the suppositions of the
ANOVA model, or when the response is a counting, a proportion, among others
(HADI et al., 2010). Hence, for each one of the matrices with missing values
obtained by simulations from the junction of the algorithm EM with the GAMMI
model up to k multiplicative terms (k=0,1,2), using the simple residual linear
regression model. Concerning the foliar plague set, it was assumed, for MIGAMMI
and EM-GAMMI or (IM-AMMI) algorithms, Poisson and Gaussian logarithmic link
function and identity, respectively. As for Acácia dataset, the binomial model with
logit link function was employed by MIGAMMI, and EM-GAMMI.

2.5 Criteria used to evaluate the method

As evaluation criteria, it was used the statistics: normalized root mean square
error - NRMSE, variance between imputation - VE , average squared bias between
the imputations mean and the original value deleted in the simulation study - ASB,
general measure of performance (Tacc) and analysis of deviance - ANODEV. By
NRMSE criterion, Ching et al. (2010), the algorithm is compared using the adjusted
means, that is, the imputed values are compared to the correspondent observed
values in the original dataset, in accordance with the equation (3). It is recognized
as the best method in performance, the one which presents lower statistic value
NRMSE.

NRMSE =

√
mean(ximp − xorig)2

s(xorig)
(3)

where ximp and xorig are vectors containing the respective mean imputed values
and true values of the missing simulated observations and s(xorig) represents the
normalized standard deviation values contained in vector xorig.
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2.5.1 General measure of performance (Tacc)

According to Bergamo (2007), the general measure of performance Tacc is a
measure of accuracy, used to evaluate a particular procedure of MI and, which can
be decomposed in two components Tacc = VE+ASB. The former, VE , represents the
variance between imputations, in general, small values of VE indicate good accuracy
of the method. ASB, in turn, represents the average squared bias between mean
imputations (Y ) and the original value removed in the simulation study (VO). The
method of multiple imputation will present good performance if the values of ASB
are small. The statistics VE and ASB are presented in (4).

VE =
1

na

na∑
l=1


M∑

m=1
(ŷij(m) − Y l)

2

M − 1

 e ASB =
1

na

na∑
l=1

M
(Y l − V Ol)

2

M − 1
(4)

where, for each position (i, j) of random removals in the data matrix, M imputations
are performed; VOl original value removed at random; the index l represents the
position of the removed value correspondent to the position (i, j) with l = 1, . . . , na;
na is the total number of removed values; ŷij is the value imputed to the respective
value VOi and Y l represents the mean of imputation to the position l.

2.5.2 ANODEV

To analysis of deviance (ANODEV) it was used the statistics Fc, since
GAMMI’s model is easy to calculate, presents good performance and does not
require special tables (ACORSI et al.,2016). Thus, the statistics Fc or test Fc is as
follows:

Fc =
Dev. restricted

D.F.sv restricted
− Dev. full/D.F. full

ϕ̂
(5)

which approximates the F(D.F sources of variation; D.F. error) distribution. Where Dev.

- deviance, ϕ̂ - estimated dispersion parameter, D.F.sv - degrees of freedom from
source of variation that is being tested, Dev. restricted - deviance from the current
model (tested). For the calculation of ϕ̂, consult Acorsi et al. (2016).

In general, the statistics NRMSE and Tacc, used to compare and evaluate, offer
an excellent insight into the performance of the method in analysis. Thus, in this
paper, it was considered as a good data imputation method, the one that presented,
smaller mean/median value for the NRMSE distribution, as well as small values for
the distributions VE , ASB and Tacc, since the imputation were obtained based on
to 100 simulated matrices at different levels of randomized removals of values.
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3 Results and discussion

3.1 Foliar plague dataset

Table 3 presents the means and medians of NRMSE for the foliar plague
dataset, indicating the method of multiple imputation proposed (MIGAMMI), the
method EM+SVD and the method EM-AMMI for each level of removal percentage.
In this table, following NRMSE criterion, the method that presented the best
performance was MIGAMMI, regardless of the removal level. Therefore, at 10%
imputation, the best performance procedure was MIGAMMI0 (median=0.199).
At 20% level, MIGAMMI0 was the best in performance (median=0.2076) and
at 30%, MIGAMMI0, (median 0.1956). Also, the procedure EM+SVD obtained
the best results in terms of NRMSE than the classic EM-AMMI, with up to two
multiplicative terms for all the levels of removal.

Table 3 - Mean and median of the RMSE distribution, in which were made random
removal (10%, 20% and 30%), from foliar plague dataset

Method
10% 20% 30%

Mean Median Mean Median Mean Median

EM+SVD 0.925 0.971 1.1297 0.9518 1.0955 1.0006
EM-AMMI0 1.086 0.965 1.3770 1.0290 1.3025 1.1922
EM-AMMI1 2.168 1.462 2.3680 1.8920 2.1495 2.0158
EM-AMMI2 1.049 1.076 1.1930 1.0470 1.1218 1.0323
MIGAMMI0 0.216 0.199 0.2524 0.2076 0.2188 0.1956
MIGAMMI1 0.254 0.230 0.2454 0.2126 0.2230 0.2024
MIGAMMI2 0.227 0.221 0.2759 0.2341 0.2195 0.2046

Table 4 illustrates in terms of mean and median, the values of VE and ASB. In
this table, it was verified that the procedures of multiple imputation MI-AMMI0,
MI-AMMI1 and MI-AMMI2 provided the major variance between imputations (VE),
regardless of the percentage of missing imputation, whereas the algorithm with
minor variance between imputations was the MIGAMMI0, at 10% and 20% removal
level, followed by MIGAMMI2, at 30% removal. However, as a complement of the
analysis VE and to take the best decision about which would be the procedure with
the highest efficiency in prediction, it is necessary to analyze the average squared
bias (ASB) as well as the general measure of accuracy Tacc.

In relation to ASB, the methods with the least deviance, according to the
percentages of imputations adopted were: at 10% missing, MIGAMMI0, at 20%
missing, MIGAMMI1 and at 30% missing, MIGAMMI2 (Table 4). In all cases,
the procedures with major values of ASB were MI-AMMI0, MI-AMMI1, and MI-
AMMI2. Otherwise, the algorithms MIGAMMI0, MIGAMMI1 and MIGAMMI2,
considering their lower values of ASB, allowed to achieve major similarity between
imputations and their respective original values, resulting in a most accurate
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Table 4 - Mean and median of the combined variance between imputations (VE)
and average squared bias (ASB), corresponding to the random removal
levels of data (10%, 20% and 30%) of foliar plague dataset

Method
10% 20% 30%

Mean Median Mean Median Mean Median

VE

MI-AMMI0 0.4618 0.4064 0.3986 0.3628 0.3412 0.3425
MI-AMMI1 0.4231 0.4130 0.3835 0.3530 0.3341 0.3159
MI-AMMI2 0.4282 0.4031 0.4169 0.4249 0.3398 0.3140
MIGAMMI0 0.3557 0.3362 0.3256 0.3046 0.2927 0.2867
MIGAMMI1 0.4083 0.3784 0.3238 0.3098 0.2836 0.2710
MIGAMMI2 0.3777 0.3486 0.3310 0.3296 0.2968 0.2961

ASB
MI-AMMI0 0.1103 0.0646 0.1024 0.0807 0.0838 0.0687
MI-AMMI1 0.1064 0.0590 0.1022 0.0764 0.0771 0.0597
MI-AMMI2 0.1237 0.0850 0.0901 0.0796 0.0862 0.0740
MIGAMMI0 0.0769 0.0495 0.0814 0.0676 0.0730 0.0565
MIGAMMI1 0.1047 0.0662 0.0739 0.0631 0.0748 0.0591
MIGAMMI2 0.0776 0.0608 0.0947 0.0719 0.0697 0.0582

method. Furthermore, as the percentage measure increased, it was expected an
increase in ASB values for the procedures of imputations, which was not confirmed.
It was in fact observed a small median increase in ASB for the procedure MI-AMMI1
in comparison to MIGAMMI0, the same was verified for the procedure MIGAMMI1
in comparison to MIGAMMI0. Such an event, when it occurs, might be justified
as a decrease of values generated by the removal levels (sample decrease), because,
in conformity with Arciniegas-Alarcón et al. (2014), the imputation error tends
to increase, considering that the available information in the data matrix were
decreased by the growth of removals percentage.

To decide the best method of imputation, the general statistics of accuracy
Tacc must be considered. The statistics considers both the variance between
imputations and the mean square deviation (Tabela 4). In figure 1, it is shown
a Tacc distribution in terms of median for the MIGAMMI0 procedure (IMGA0),
MIGAMMI1 (IMGA1) and MIGAMMI2 (IMGA2) at three levels of removal. The
process of imputation MIGAMMI0 in this case presented lower median value
for imputations at 10% and 20% random removals, followed by the MIGAMMI1
operation, for imputations at 30% of removals. Thus, at 10% of randomized
removals, the medians of Tacc were: 0.4131 for MIGAMMI0; 0.4758 for MIGAMMI1;
and 0.4270 for MIGAMMI2; against 0.4942 for MI-AMMI0; 0.4977 for MI-AMMI1
and 0.5305 for MI-AMMI2. For the percentage of 20%, the procedure MIGAMMI0
presented the best performance, median = 0.3847. In case of missing at 30%, the
procedure MIGAMMI1 achieved the best performance, median = 0.3473. Therefore,
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it is worth highlighting the good performance of MIGAMMI method, whether in
comparison to the results of the presented methods and also due to the low values
obtained by NRMSE statistics and general mean accuracy (Tacc).
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Figure 1 - Distribution of the general measure accuracy (Tacc), using the methods
MIGAMMI0 (IMGA0), MIGAMMI1 (IMGA1) and MIGAMMI2
(IMGA2), for foliar plague dataset at levels of 10%, 20%, and 30% of
removals.

3.2 Second dataset - Acácia

For the evaluated Acácia dataset, the method of imputation MIGAMMI
invariably provided the lowest statistic value NRMSE, in means and medians terms,
when compared to the method EM-GAMMI in all levels of removals (Table 5).
The low values obtained from NRMSE suggest better predictions by the multiple
imputation procedure MIGAMMI, that is, the imputed values come closer to the
observed correspondents. For missing at 10%, the MIGAMMI0, MIGAMMI1 and
MIGAMMI2 procedures evidenced similar performance, however, for computer
facilities and economy of parameters MIGAMMI0 must be the chosen approach.
For missing at 20%, the MIGAMMI1 presented better performance (mean =
0.1725), with 30% of missing, MIGAMMI2 presented better performance and
with 40% of missing, MIGAMMI2 was the best method in performance. Also,
it was verified the growth of NRMSE in the EM-GAMMI-0, EM-GAMMI-1 and
EM-GAMMI-2 procedures, as the removal levels increase; the same can be observed
for MIGAMMI0, MIGAMMI1 and MIGAMMI2 procedures, at moderate levels.
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Table 5 - Mean and median of NRMSE distribution, in which were made random
removal at 10%, 20%, 30% and 40%, of Acácia dataset

Method
10% 20% 30% 40%

Mean Median Mean Median Mean Median Mean Median

EM-GAMMI-0 0.5128 0.5026 0.5232 0.5122 0.5699 0.5523 0.6111 0.5999
EM-GAMMI-1 0.5057 0.4960 0.5287 0.5179 0.5863 0.5737 0.6357 0.6310
EM-GAMMI-2 0.5140 0.5021 0.5404 0.5336 0.6022 0.5809 0.6550 0.6512
MIGAMMI0 0.1664 0.1612 0.1741 0.1724 0.1785 0.1744 0.1738 0.1725
MIGAMMI1 0.1683 0.1702 0.1725 0.1726 0.1757 0.1758 0.1737 0.1709
MIGAMMI2 0.1671 0.1528 0.1743 0.1707 0.1738 0.1733 0.1714 0.1690

Table 6 presents the variance between imputations (VE) and the average
squared bias (ASB), in terms of mean and median of 100 matrices submitted to the
approaches of multiple imputations MIGAMMI0, MIGAMMI1 and MIGAMMI2. In
this scenario, the methods presented small variance VE with close values, in all levels
of percentage imputation, since with up five decimal places means and medians
results of VE were approximately 0.00008. In relation to ASB, the procedures of
imputations MIGAMMI0, MIGAMMI1 and MIGAMMI2, in four levels of missing,
presented slight tendencies, that is, values of ASB close to zero, ranging from
0.0000194 to 0.0000207 in means terms, which indicates an excellent accuracy of the
methods. It is worth emphasizing the small increase of ASB, which was expected,
since by increasing the percentage of removals for the imputation, the size of the
sample decreases.

Table 6 - Mean and median of combined variance between imputation (VE) and
average squared bias (ASB), corresponding to the random removal of data
(10%, 20%, 30% and 40%) of Acácia dataset

Method
10% 20% 30% 40%

Mean Median Mean Median Mean Median Mean Median

VE

MIGA0 820 819 811 799 819 819 816 810
MIGA1 828 830 817 796 793 786 822 831
MIGA2 820 782 813 806 799 785 824 810

ASB
MIGA0 194 171 204 197 210 198 207 204
MIGA1 199 189 201 206 204 198 206 193
MIGA2 195 183 205 199 199 197 201 188

1MIGAMMI0 (MIGA0), MIGAMMI1 (MIGA1) e MIGAMMI2 (MIGA2)
2All values in the table are preceded by four decimal places, e.g., the first value is
0.0000820

Figure 2 shows the statistic distributions Tacc for the procedures MIGAMMI0
(IMGA0), MIGAMMI1 (IMGA1) and MIGAMMI2 (IMGA2). In this case, we

Braz. J. Biom., Lavras, v.40, n.1, p.1-20, 2022 - doi: 10.28951/bjb.v40i1.536 13



observed that the methods presented approximately symmetric distributions around
the median for the imputations performed. The method with minor values for the
parameter of median centrality, for missings at 10% was MIGAMMI2, for missings
at 20% was MIGAMMI2, for missings at 30% was MIGAMMI1 and for missings
at 40% was MIGAMMI2. On the other hand, it should be highlighted that all the
approaches displayed small values of Tacc, close to zero, in all levels of performed
imputations (Table 7). Therefore, the method MIGAMMI0 might be preferred, if
considering the idea of parameter economy or computer facilities, since it exempts
the inclusion of multiplicative terms.
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Figure 2 - Distribution of the general measure accuracy (Tacc), using the methods
MIGAMMI0 (MIGA0), MIGAMMI1 (MIGA1) and MIGAMMI2
(MIGA2), for Acácia dataset at levels of 10%, 20%, 30% and 40% of
removals.

Table 7 - Median of Tacc distribution to the random removal levels (10%, 20%, 30%
and 40%) for Acácia dataset

Method
Tacc

Median (10%) Median (20%) Median (30%) Median (40%)

MIGAMMI0 0.0001000 0.0001016 0.0001020 0.000101
MIGAMMI1 0.0001031 0.0001006 0.0000980 0.000102
MIGAMMI2 0.0000993 0.0001001 0.0000986 0.000100

Finally, when the results of procedures were analyzed for the both multi-
environment datasets, it was found that the approaches of multiple imputation
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MIGAMMI displayed better results than the EM+SVD, EM-AMMI in terms of
NRMSE values, for foliar plague dataset, as well as, better results for Acácia
dataset, both in terms of NRMSE, which compared the procedures EM-GAMMI0,
EM-GAMMI1 and EM-GAMMI2 with the procedures MIGAMMI0, MIGAMMI1
and MIGAMMI2 and in terms of general measure of accuracy Tacc, due to their
low values obtained. According to Rubin (1987), Carvalho et al. (2017), MI is
more advantageous than single imputation, allowing increase in efficiency of the
estimates, allowing valid inferences, reflecting the additional variability due to
missing values and allows to compare the sensibility of the obtained inferences by
different techniques of imputation, by simply using methods of complete data.

3.3 Application - foliar plague dataset

Once performed the stage of imputation, the following step is to carry out
the analyses about the experiment, a convenient model is used for such proposal.
Tables 8, 9 and 10 present the result of the analysis of deviance (ANODEV), in
which we utilized the models GAMMIs, for removal levels at 10%, 20% and 30%
respectively. True values removed at 10% level were 1.25 and 2.00 with imputed
correspondents 1.40 and 2.00, at 20% level, the values removed were 2.75; 3.00; 2.25
and 1.25 with imputed correspondents 2.80; 3.00; 1.91 and 1.27 and at 30% level,
the removed values by the process of simulation were 4.00; 3.00; 1.25; 1.00; 1.75
and 2.00 with imputed correspondents 4.0; 3.0; 1.29; 0.65; 2.0; 2.0. As expected,
for well-balanced processes, besides the methods reproducing imputed values close
to the observed correspondents, it was not found any substantial alterations in the
inferences for the three levels of removal (Tables 8, 9 and 10) in comparison to the
results presented by Hadi et al. (2010), relevant with up to two multiplicative terms
in the model.

Table 8 - Deviance analysis of foliar plague dataset, after imputation by the method
MIGAMMI0, with random removals at 10%

Source of variation D.F. Deviance Deviance mean Fc p-value

Environment 4 4.1067 1.0267 76.05 0.0132
Genotype 3 2.8562 0.9521 70.52 0.0142
GAMMI1 6 3.6184 0.6031 44.67 0.0222
GAMMI2 4 0.9680 0.242 17.93 0.0542
Error 2 0.0270 0.0135

Total 19 11.5763 0.6093
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Table 9 - Deviance analysis of foliar plague dataset, after imputation by the method
MIGAMMI0, with random removals at 20%

Source of variation D.F. Deviance Deviance mean Fc p-value

Environment 4 4.5929 1.1482 83.81 0.0120
Genotype 3 3.2505 1.0835 79.088 0.0127
GAMMI1 6 2.9942 0.4990 36.426 0.0272
GAMMI2 4 0.9159 0.2289 16.714 0.0579
Error 2 0.0274 0.0137

Total 19 11.7809 0.620

Table 10 - Deviance analysis of foliar plague dataset, after imputation by the
method MIGAMMI0, with random removals at 30%

Source of variation D.F. Deviance Deviance mean Fc p-value

Environment 4 4.3151 1.0787 101.29 0.0099
Genotype 3 2.8065 0.9355 87.84 0.0115
GAMMI1 6 4.0746 0.6791 63.77 0.0157
GAMMI2 4 1.0183 0.2545 23.90 0.0411
Error 2 0.0213 0.0107

Total 19 12.2358 0.6439

The results obtained provide some guide for future research related to
missing data. For instance, to use new models GAMMIs for imputation in
multi-environment data with overdispersion, other or new methods of imputation
can be taken to make comparisons with the method MIGAMMI, new datasets can be
taken for analyses. The methods EM-AMMI-0, EM-AMMI-1, EM+SVD, presented
in literature, showed inferior performance to the MIGAMMI introduced in this
paper. In Arciniegas-Alarcón and Dias (2009), the method EM-AMMI1 presented
better performance than IMLD). In previous studies, Arciniegas et al. (2014),
demonstrated the good performance of the methods EM+SVD and EM-AMMI
when compared to other methods of imputation. Such indicators added to the
results presented here, are solid findings of the good quality of MIGAMMI method.

Conclusions

In this paper, it was analyzed an approach of statistical multiple imputation of
data in multi-environment trials and evaluated by statistical distribution NRMSE
and general measure of accuracy Tacc. The procedure MIGAMMI exhibited the
best results as a method of imputation, proving to be superior to the methods
EM-GAMMI, EM-AMMI and EM+SVD, in both datasets used in the study.
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Therefore, it was possible to conclude in favor of the procedure of multiple
imputation MIGAMMI, the most efficient method to perform imputation, both
in terms of NRMSE and in terms of overall accuracy statistic Tacc.
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AMOÊDO, P. M; PIEDADE, S. M. P.; DIAS, C. T. S, ARCINIEGAS-ALARCÓN,
S. Algoritmo de imputação múltipla MIGAMMI. Braz. J. Biom., Lavras, v.40, n.1,
p.1-20, 2022.

RESUMO: Dados ausentes são comuns em experimentos multiambientais por mais bem
planejados que sejam, por isso, o uso de métodos de análises apropriados é essencial
para reduzir o impacto gerado pela perda de informações. A imputação de dados é
uma das técnicas comumente usada para contornar o problema das ausências, estima os
dados ausentes por valores plauśıveis e posteriormente as análises são realizadas sobre
os dados completados. O presente trabalho tem por objetivo propor um novo método
de imputação múltipla, para dados provenientes de experimentos multiambientais,
resultante da proposta dos reśıduos simples do modelo de regressão linear. Deste
modo, modificações no algoritmo de imputação simples EM-AMMI foram realizadas,
de forma a comportar o modelo de efeitos principais aditivos e interação multiplicativa
generalizado GAMMI. A qualidade do método de imputação múltipla foi avaliada por
meio das distribuições de uma estat́ıstica geral de acurácia que combina a variância entre
imputações e o viés quadrático médio e da raiz normalizada do erro quadrático médio
(NRMSE). Para tal, simulações de retiradas aleatória de valores nos ńıveis de 10%, 20%,
30% e até 40% foram geradas a partir de dois conjuntos de dados reais e as imputações
correspondentes obtidas. Os resultados da medida geral acurácia e da NRMSE, pelos
seus baixos valores obtidos em relação ao método proposto, servem de evidências da
melhor qualidade do algoritmo de imputação múltipla IMGAMMI proposto.

PALAVRAS-CHAVE:
AMMI generalizado; análise de deviance; estat́ıstica Tacc; imputação biplot.
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ARCINIEGAS-ALARCÓN, S.; DIAS, C. T. S. Data imputation in trials with
genotype by environment interaction: an application on cotton data. Revista
Brasileira de Biometria, São Paulo, v.27, p.125-138, 2009.
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Braz. J. Biom., Lavras, v.40, n.1, p.1-20, 2022 - doi: 10.28951/bjb.v40i1.536 19
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