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▪ ABSTRACT: Malaria is still a fatal disease in many countries around the world. 

Establishing measures to control and prevent this disease has been a worldwide concern 

since 1950, when the World Health Organization launched a Malaria Eradication Plan. 

In Brazil, malaria was eliminated in much of the territory, but resisting in an area 

known as the Legal Amazon. That said, the main scope of this work is to develop 

statistical control charts that consider the temporal dependency structure in the data and 

are suitable for the current and future monitoring of malaria cases, in order to detect 

possible outbreaks or epidemics in states in the Legal Amazon region. The tools 

presented here could also collaborate in directing control actions and combating the 

spread of the disease. In particular, we intend to: (i) build a statistical model to predict 

the occurrence of cases of the disease, which considers the existence of a possible 

temporal dependency structure between the collected data; (ii) use the Statistical 

Process Control (SPC) techniques, notably the control charts, to monitor (separately for 

each form of the disease) cases of malaria of the types Plasmodium Vivax, Plasmodium 

Falciparum and Plasmodium Mista in the Amazon region; (iii) establish epidemic 

thresholds based on the obtained control charts. Considering data from 2013 to 2017, 

this study revealed, among others, that the generalized autoregressive and moving 

average models with Negative Binomial distribution (Negative Binomial GARMA 

models) were more efficient, fitting better, compared to Poisson GARMA models, due 

to the overdispersion existing in the analyzed data. 

▪ KEYWORDS: Control chart; GARMA models; statistical monitoring; forecast; 

overdispersion. 

1 Introduction 

Malaria is a disease that has attracted global concern for a long time, and is 
considered one of the greatest causes of fatality in many countries situated in tropical 
regions, due to the high number of people who are exposed to the risk of infection. In 
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Brazil, the majority of malaria cases are in the Amazon region, which comprises the states 
of Acre, Amazonas, Amapá, Maranhão Mato Grosso, Pará, Rondônia, Roraima and 
Tocantins, located in an area known as the Legal Amazon (or “Amazônia Legal” in 
Portuguese) (LAPOUBLE et al., 2015). With the aim of increasing control of the disease, 
and to support the states and municipalities in this region, the Epidemiological 
Surveillance Information System (Sivep-Malária), a Ministry of Health (MS) and 
Department of Health Surveillance (SVS) initiative, was created in 2003, to receive real 
time notifications. 

According to Braz (2005), the greatest challenge in controlling malaria in this region 
is defining the epidemic threshold of the disease, in order to identify the transmission 
limits expected for every municipality and/or state, and when they may be exceeded, 
behaving as an epidemic situation. Answering these questions is essential for the 
surveillance of malaria. Control charts are the main tools used in Statistical Process 
Control (SPC) and could play an important role in detecting and, principally, preventing 
diseases, since the epidemiological situation of a specific deterioration in a certain 
location, for example, can be monitored through control limits. When correctly applied, 
control charts are highly efficient in detecting outbreaks, indicating the best way to 
establish intervention measures, although its application needs to become established 
among health professionals. 

There are studies in literature in which control charts were used to monitor diseases 
and other health-related aspects. For example, Schilling (1944) used control charts to 
monitor the number of visits made by San Francisco Nursing Association nurses. Sellick 
(1993) used SPC (control charts u, c and p) techniques to monitor attribute data, in order 
to efficiently monitor the occurrences of resistant pathogens in hospital infections. 
Benneyan (1998) held a discussion on the importance of applying SPC techniques in 
health contexts, describing some of the main tools, which are control charts c, p and np 
(SHEWHART, 1931). He confirmed that maintaining a process under statistical control 
may reduce the nosocomial rate (rate of infections contracted with a patient entering or 
leaving a hospital). Burns et al. (2005) conducted a study on the occupancy of beds at the 
University of Queensland Hospital, located in Australia, in which they demonstrated that 
a high occupancy rate indicated an overload for local activities, ranging from the 
preparation of beds to administrative tasks; and a low rate indicated an idle system, 
producing the same expenses. With the use of a cumulative sum (CuSum) control chart, 
patient flow trends could be identified, which resulted in increased efficiency in 
administering beds, reducing the number of occupancies. Pafiadache et al. (2015) made a 
comparison between the X-MR control charts (for individual measurements and moving 
ranges, respectively) and the Exponentially Weighted Moving Average (EWMA), for the 
early detection of monthly cases of hepatitis C notifications in the state of Rio Grande do 
Sul, with the EWMA being more efficient in identifying periods with a higher number of 
cases. Zanini et al. (2016) conducted a study where the main objective was to describe a 

number of quality control charts (�̅�, R, CuSum and EWMA) to follow-up surveillance 
processes, using indicators obtained at the Hospital Universitário de Santa Maria (Santa 
Maria University Hospital), in Rio Grande do Sul. 

Specifically related to the application to malaria data, we cite the work of Cullen et 
al. (1984), in which they proposed the use of control charts, with the aim of creating an 
early epidemiological warning system for malaria outbreaks in two regions in the north of 
Thailand between 1973 and 1981. Four techniques were considered to estimate the 
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process average (overall, moving, accumulated, and monthly averages) in the control 
chart construction, based on years without episodes of the epidemic. Braz (2005) 
conducted a study on the early detection of malaria epidemics in the Legal Amazon 
region, in which he compared five control charts, constructed according to the Cullen (or 

Shewhart), Albuquerque, 3rd quartile, tabular CuSum, and Stern & Lightfoot methods, 
applied to the data obtained from two institutions: the National Malaria Control Program 
Information System and Sivep-Malaria, between 1996 and 2003. Following an analysis of 

the results, the author concluded that the 3rd quartile method presented higher rates of 
real alarms, therefore being the most adequate for the early detection of malaria 
epidemics in Brazilian municipalities of the Legal Amazon region. 

The main objective of this research was to develop control charts that consider the 
time dependence structure existent in the data, and are adequate for current and future 
monitoring of Plasmodium Vivax, Plasmodium Falciparum and Plasmodium Mista 
malaria cases, in order to detect possible outbreaks or epidemics in states in the Legal 
Amazon region. The statistical tools presented here may also assist with directing control 
actions and contribute towards combating the spread of the disease. The specific 
objectives are as follows: (i) to construct a statistical model to predict occurrences of 
cases of the disease, which considers the existence of a possible time dependence 
structure in the data collected; (ii) to use SPC techniques, particularly, control charts, to 
monitor (separately for each form of the disease) the three types of malaria cases 
mentioned above, in the Amazon region; and (iii) to establish epidemic thresholds, based 
on the control charts obtained.  

The remainder of this article is divided into three sections. The materials and 
methods used to develop this research are described in Section 2. The discussions and 
results obtained with the application of the methods cited in Section 2 to a real data set are 
presented in Section 3. Lastly, the conclusions and prospects for future research are 
presented in Section 4. 

 

 

2 Materials and methods 

The data (Section 2.1) and main statistical procedures (Sections 2.2 and 2.3) 
used to develop this research are briefly presented in this section.  

2.1 Malaria data 

In order to achieve the objectives described in Section 1, a real data set was used, 

comprising information obtained from two distinct databases. The first contains 

information on malaria taken from Sivep-Malaria (http://200.214.130.44/sivep_malaria/), 

considering the period 2013 to 2017. This set is made up of 102,932 observations for the 

municipalities that form the Legal Amazon region and six variables, which are presented 

in Table 1. 
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Table 1 – Variables extracted from Sivep-Malaria 

Variable Description 

codibgeinfeccao Municipal code of the area where the notification was registered 

anoinfec Year of notification 

semepid Epidemiological week in which the notification occurred 

ncasosvivax Number of cases of occurrence by Plasmodium Vivax 

ncasosfalciparum Number of cases of occurrence by Plasmodium Falciparum 

ncasosmista Number of cases of occurrence by Mixed Plasmodium 

 
The second database contains climatic information taken from the National Oceanic 

and Atmospheric Administration (NOAA) - NCEP/NCAR Reanalysis 1 

(https://www.cpc.ncep.noaa.gov/), which were used as predictors in the modeling process, 

since, according to Ferreira (2015), on studying the etiology of vectors of many diseases 

considered “tropical”, it is noted that high temperatures, high humidity, the length of the 

summer season, or heat and humidity conditions, among other factors, favor the 

proliferation of mosquitos which transmit these diseases. The database includes 1,825 

observations related to daily collections during the period 2013 to 2017, and three 

variables, which are presented in Table 2. 

We used R software, version 3.5.1 (R CORE TEAM, 2021), to analyze the data. 

 

Table 2 – Variables extracted from NOAA 

Variable Description 

precip Average rainfall (in millimeters, mm) 

tempair Average air temperature (in Celsius degrees, °C) 

rhum Average humidity (in percentage, %) 

 

2.2 GARMA models 

Benjamin et al. (2003) describe the class of GARMA models, as an extension of 

Gaussian autoregressive moving average (ARMA) models, for a more flexible class, 

indicated for time series with count data and non-Gaussian distributions (such as Poisson 

and Negative Binomial, for example), in which the response variable has a conditional 

distribution in the exponential family, given the past of the process. 

As an illustration, consider 𝑌𝑡, with 𝑡 = 1,2, … , 𝑛, as the count process response 

variable, so that the distribution of 𝑌𝑡 belongs to the exponential family. Given the past of 

the process, the 𝑌𝑡 conditional model could be written in the following way: 

 

𝑓(𝑦𝑡  | 𝐹(𝑡−1)) = exp {
𝑦𝑡𝜃𝑡−𝑏(𝜃𝑡)

𝜙
+ 𝑐(𝑦𝑡 , 𝜙)},                           (1) 

 

http://www.cpc.ncep.noaa.gov/)
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where t represents time; 𝐹(𝑡−1) = (𝑦(𝑡−1), 𝒙(𝑡)), with 𝑦(𝑡−1) representing the past of the 

count process, 𝒙(𝑡) a p-dimensional vector of exogenous covariates which were observed 
at the time t; 𝜃𝑡 is the canonical parameter; 𝜙 is the dispersion or scale parameter; b(·) and 
c(·) are known functions, which vary in accordance with the distribution of probability 
associated with 𝑌𝑡. 

In addition to the random component, represented by 𝑌𝑡, there are two essential 
components in the GARMA model composition: the systematic component and the link 
function. The systematic component (or linear predictor) is the linear combination of the 
predictor variables with their respective effects, being expressed by:    

 

𝜂𝑡   =  𝛽0  + ∑ 𝛽𝑗𝑥𝑗

𝑝

𝑗 = 1

+  𝜏𝑡  , or  also, 𝜂𝑡   =  𝒙T 𝜷 +   𝜏𝑡  , 

 

where 𝒙 = (1, 𝑥1, 𝑥2, . . . , 𝑥𝑝)T is the vector of explanatory variables; in other words, every 
𝑥𝑗 represents the predictor variable of the model, with 𝑗 =  1, 2, . . . , 𝑝; 𝜷 =  (𝛽0, 𝛽1,
. . . , 𝛽𝑝)𝑇 denotes the vector of model coefficients; details of 𝜏𝑡 will be demonstrated 
below. 

In order to relate the linear predictor to the average of 𝑌𝑡, the link function is used, 
which is monotonous and distinguishable, and denoted by g(·). Thus, 

g(𝜇𝑡) =  𝜂𝑡 =  𝒙T 𝜷 + 𝜏𝑡 ,                               (2) 

where 𝜏𝑡 = ∑ 𝜆𝑗
𝑝
𝑗=1 [𝑔(𝑦𝑡−𝑗) − 𝒙𝑡−𝑗

T 𝜷] + ∑ 𝛾𝑟
𝑞
𝑟=1 [𝑔(𝑦𝑡−𝑟) − 𝜂𝑡−𝑟] represents the 

autoregressive moving average term. 

The estimation of the GARMA model is carried out using the classical method of 
maximum likelihood; for further details, consult Benjamin et al. (2003). The parameters p 
and q are selected by an analysis of autocorrelation and partial autocorrelation functions, 
in addition to the Akaike information criterion (AIC) (AKAIKE, 1977), or Bayesian 
information criterion (BIC) (SCHWARZ, 1978). The tscount package function tsglm(·) 
(LIBOSCHIK et al., 2017) may be used in R software to adjust the GARMA models. 

In the GARMA models, the forecasts h steps ahead (in other words,  �̂�𝑡+ℎ) are 
obtained through recursive forecasting by the linear predictor of each model 
(ANDRADE, 2016), in which non-observed values are replaced by their respective one-
step ahead forecasts. 

The ideal one-step ahead predictor, �̂�𝑡+1 for  𝑦𝑡+1, is obtained considering the past 
of the process until moment t, and possible covariates collected at moment t+1. 
Therefore, the conditional expected value, �̂�𝑡+1 = 𝐸[𝑦𝑡+1 | 𝐹𝑡+1], is obtained through 
Equation (1). The predict(·) function is used in R software. 

2.2.1 Poisson GARMA 

A specific case in GARMA models is when we associate Poisson distribution to the 
random component, which is very common when the variable to be investigated is a count 
that has an average equal, or very close, to the variance. 

In other words, 𝑌𝑡  | 𝐹(𝑡−1) is a variable with Poisson distribution, with a 𝜇𝑡  average. 

As demonstrated in Equation (1), its probability function can be expressed as: 
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𝑓(𝑦𝑡  | 𝐹(𝑡−1)) = exp{𝑦𝑡 log(𝜇𝑡) − 𝜇𝑡 − log(𝑦𝑡!)} , 

 

where 𝜙 = 1, 𝜃𝑡 = log(𝜇𝑡), b(𝜃𝑡) = exp{𝜃𝑡} e c(𝑦𝑡, 𝜙) = −log(𝑦𝑡!). Using the canonical 
link function, i.e., the logarithmic function, the linear predictor may be represented, as 

demonstrated in Equation (2), by: 
 

log(𝜇𝑡) = 𝛼0 + ∑ 𝜆𝑗[log(𝑦𝑡−𝑗
∗ )]

𝑝

𝑗=1

+ ∑ 𝛾𝑟[log(𝑦𝑡−𝑟
∗ ) − log(𝜇𝑡−𝑟)] ,

𝑞

𝑟=1

 

where  𝑦𝑡−𝑗
∗ = max{𝑦𝑡−𝑗 , 𝑐}, 0 < 𝑐 < 1. 

 

2.2.2 Negative Binomial GARMA 

Another specific case of GARMA models takes place when we associate the 
Negative Binomial (NB) distribution with the random component, which is indicated 
when the variable to be investigated is an overdispersed count, i.e., with a higher variance 
than mean. 

Let 𝑌𝑡  | 𝐹(𝑡−1) be a variable with NB(k, 𝜇𝑡) distribution. As demonstrated in 
Equation (1), the probability function may be expressed as: 

 

𝑓(𝑦𝑡  | 𝐹(𝑡−1)) = exp {𝑦𝑡  log (
𝜇𝑡

𝜇𝑡 +  𝑘
) + 𝑘 log (

𝑘

𝜇𝑡 +  𝑘
) + log (

Γ(𝑘 + 𝑦𝑡)

Γ(1 + 𝑦𝑡)Γ(𝑘)
)} 

where 𝜙 = 1, 𝜃𝑡 = log (
𝜇𝑡

𝜇𝑡+ 𝑘
) , 𝑏(𝜃𝑡) = −𝑘 log (

𝑘

𝜇𝑡+ 𝑘
)  e  𝑐(𝑦𝑡 , 𝜙) = log (

Γ(𝑘+𝑦𝑡)

Γ(1+𝑦𝑡)Γ(𝑘)
).  In 

addition, Γ(𝑠) = ∫ 𝑥𝑠−1𝑒−𝑥𝑑𝑥
∞

0
 represents the gamma function. 

Using the logarithmic link function (canonical), the linear predictor shown in 
Equation (2), may be represented by:  

 

log (
𝜇𝑡

𝜇𝑡 + 𝑘
) = 𝛼0 + ∑ 𝜆𝑗[log(𝑦𝑡−𝑗

∗ )]

𝑝

𝑗=1

+ ∑ 𝛾𝑟[log(𝑦𝑡−𝑟
∗ ) − log(𝜇𝑡−𝑟)],

𝑞

𝑟=1

 

where 𝑦𝑡−𝑗
∗ = max{𝑦𝑡−𝑗 , 𝑐}, 0 < 𝑐 < 1. 

 

2.2.3 Multicollinearity 

Multicollinearity is a term used in literature to indicate the existence of a correlation 
between two (or more) predictor variables inserted in a multiple regression model. In 
many cases, it becomes a problem since it indicates a violation of the assumption of 
independence between these variables, thereby impacting the parameter estimates. Thus, 
it is suggested that only the covariates that present a variance inflation factor (VIF) 
(BELSLEY et al., 1980) of less than 10 are maintained in the analysis (AKINWANDE et 
al., 2015). The VIF is calculated as shown in Equation (3): 
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𝑉𝐼𝐹𝑗 =
1

1−𝑅𝑗
2 ,       𝑗 = 1, 2, . . . , 𝑝,                                         (3) 

where 𝑅𝑗
2 is the coefficient of determination of the model adjusted for the j-th variable, 

i.e., it represents the proportion of the variability in data (response variable) which is 
explained by this model. 

2.3 Residual control charts and the forecast of new process observations 

Two control chart proposals are considered in this research. The first is the control 
chart for autocorrelated data (MONTGOMERY, 2019), applied to the residuals of the 
adjusted time series model, which aims to obtain/calculate the control limits and then 
identify any possible observations outside these thresholds (phase 1 of the analysis). 
The second proposal involves use of the control chart to monitor any new observations 
of the response of interest, i.e., with regards to monitoring future process observations 
(phase 2 of the analysis), which will enable any possible outbreaks or epidemics in the 
context of application to malaria, and other infectious diseases, to be detected in 
advance. According to Montgomery (2019), phases 1 and 2 of applying the control 
charts have different objectives. In phase 1, also called retrospective analysis, the 
history of the process until the period of interest is analyzed, constructing control limits 
(called “trial control limits”), to determine if the process was under statistical control 
during the period of time in which the data was collected, and to see if these estimated 
limits may be established to monitor future production. On the other hand, in phase 2, 
also called prospective analysis, the control chart is used to monitor any future 
observations of the process, with the limits established in phase 1 as its base. 

The origin of the residual control chart dates to work by Mandel (1969) and 

Haworth (1996), which considered the adjustment of simple and multiple linear 

regression models, respectively. Within the context of autocorrelated data, the use of 

this SPC tool has been gaining ground and importance in literature (for example, see 

NOSKIEVICOVÁ, 2009; BISRI and SINGGIH, 2018). The main idea of this technique 

is to use the residuals of the proposed model as a variable to be monitored. This 

procedure has a number of advantages, such as: (i) the residuals are uncorrelated; (ii) 

the control limits obtained are constant; (iii) it is easy to interpret; and (iv) it assists in 

visualizing the behavior of the series presented. 

In their simplest form, the residuals are called “ordinary”, and obtained by the 

differences between the values observed and those estimated (or predicted) by the 

model: 𝑒𝑡 = 𝑦𝑡 − �̂�𝑡, for t = 1, 2, . . ., n. 

Some authors suggest modifying these residuals (standardized and studentized 
residuals), and working with other types, such as the randomized quantile (PARK et al., 
2020) and deviance residuals (SKINNER et al., 2003). 

In this research, the variables to be monitored are the standardized Anscombe 
residuals (ANSCOMBE, 1953; MCCULLAGH and NELDER, 1989), which have 
approximate normality (even with very small sample sizes) and behavior similar to 
deviance residuals (cf. PIERCE and SCHAFER, 1986) as the main characteristics. 
These standardized residuals may be calculated as follows: 
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ℯ𝑡
𝐴𝑛𝑠𝑐.𝑝 =

3

�̂�2
(1 + 𝑦𝑡�̂�2)

2

3 − (1 + �̂�𝑡�̂�2)
2

3 + 3 (𝑦𝑡

2

3 − �̂�𝑡

2

3)

2(�̂�𝑡 + �̂�𝑡
2�̂�2)

1

6

,   𝑡 = 1, 2, . . . , 𝑛, 

 

where �̂� represents the estimate of the standard deviation 𝜎 (unknown), and �̂�𝑡 the 
estimated value for the model at moment t. 

In the resulting control chart, the central line (CL) is equal to zero, since it is the 
value expected for the sum of the residuals of a model whose assumptions have not 
been violated; and the lower and upper control limits (LCL and UCL, respectively) are 
calculated based on Normal (or Gaussian) distribution. The expressions to obtain these 
limits are: 

 

LCL = −𝑤 ∗ 𝜎,    CL = 0    and    UCL = 𝑤 ∗ 𝜎 ,                 (4) 

 

where w represents the distance between the control limits and CL (w = 3 is usually 
adopted, which corresponds to the usual three-sigma limits); and 𝜎 is the standard 
deviation (unknown) of the residuals, which may be replaced by the standard deviation 
�̂� calculated (or estimated) from the data available (in particular, it assumes a value 
equal to 1, since they are standardized residuals). In this case, estimates of the control 
limits presented in Equation (4) are also obtained. 

Described in Montgomery (2019), the control chart to monitor future observations 
of the process is an empirical procedure, based on the EWMA control chart for 
autocorrelated data, which combines information on the state of statistical control, and 
the process dynamic in a single graphic tool. Constructed from the model proposed 
(adjusted), its CL is defined based on forecasts obtained and the control limits (LCL and 
UCL) are based on the forecast error variance. Consequently, it is possible to make 
forecasts on the monitored variable, since the chart is constructed according to the 
model proposed. Therefore, the occurrence of atypical and/or undesirable phenomena 
can be predicted. The CL, LCL and UCL estimates can be obtained, as presented in 
Equation (5): 
 

LCL𝑡+ℎ = �̂�𝑡+ℎ − 𝑤�̂��̂�𝑡+ℎ
,   CL𝑡+ℎ = �̂�𝑡+ℎ     and     UCL𝑡+ℎ = �̂�𝑡+ℎ + 𝑤�̂��̂�𝑡+ℎ ,    (5) 

 

where t represents the moment at which the observation was collected; h is the number 
of steps ahead in which the forecast will be carried out; �̂�𝑡+ℎ denotes the value 
(response) estimated by the model at the moment t + h; and �̂��̂�𝑡+ℎ

  is the standard 

deviation estimate of the response predicted at the moment t + h. 
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3. Results and discussion 

In this section, we present and discuss the main results obtained from application 
of the statistical techniques described above (Sections 2.2 and 2.3) to a real data set 
containing information on notifications of malaria cases in the states of the Legal 
Amazon region (Section 2.1). In particular, construction of control limits for the 
proposed charts will be carried out based on a 6σ quality policy, i.e., considering w = 3, 
or also the probability of a type I error (false alarm or false positive) equal to α = 
0.0027. Therefore, although the process is under statistical control, an out of control 

sign will be observed for every 1/α = 1/0.0027 ≈ 370 samples, on average 
(MONTGOMERY, 2019). The ratio (or measure) 1/α is well known in literature on 
SPC as the average run length (ARL). It is important to highlight that in the following 
analysis, Falciparum and Mista were considered Falciparum malaria, due to the 
similarity in behavior and form of treatment.  

3.1 Descriptive analysis 

Initially, a descriptive analysis was carried out, with the aim of studying the 
behavior of Vivax and Falciparum malaria notifications, separately, by Legal Amazon 
state, and also to identify the municipalities which would be maintained to apply the 
models proposed, since the interest resides in defining an epidemic threshold, and the 
absence of notifying the disease is not an interesting factor to be taken into 
consideration. The state of Tocantins was not considered in the analysis process, since 
there was only one malaria notification in 2015. Therefore, it was removed, since it did 
not contain the information required to construct the time series. 

Table 3 provides the number of malaria cases notified between 2013 and 2017, 
according to Sivep-Malaria, and the quantity of municipalities that registered 
occurrences of the disease. A decline in the total number of notifications is observed 
until 2016, followed by a large increase in 2017; similar behavior is observed for the 
notifying municipalities. It should be highlighted that during 2017 there was an increase 
in the incidence of diseases such as dengue, zika and chikungunya, which have the 
Aedes aegypti mosquito as the vector. Another important factor, which is related to the 
number of malaria cases notified, was the immigration movement encouraged by the 
new Migration Law proposed through Bill PLS 288/2013, sanctioned on May 24, 2017. 

 
Table 3 - Number of total cases of malaria reported in the Legal Amazon region (period 

2013-2017) 

Year No. Notifications No. Municipalities 

2013 169,196 361 

2014 138,925 319 

2015 137,931 288 

2016 121,155 268 

2017 189,191 282 

Source: Sivep-Malaria. 
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A selection of municipalities within each state in the region (except for Tocantins) 
was then carried out. The proportion of notifications was calculated in every 
municipality, in relation to its respective state, and the values obtained were then 
classified in descending order. The municipalities that jointly accumulated 50% of the 
cases notified were then selected to continue with the analysis. Table 8 (see Appendix 
A) presents the municipal codes of the municipalities selected to form the series of 
notifications of Vivax and Falciparum malaria cases. It was observed that at least one 
municipality was maintained for the years under analysis for the states of Acre, 
Maranhão, Mato Grosso and Rondônia. 

Table 4 displays the number of notifications of Vivax and Falciparum malária 
cases registered by state and year in the Brazilian Legal Amazon region. From an 
analysis of the results, it is observed that the state of Maranhão presented the lowest 
number of cases of the disease, while the state of Amazonas registered the highest 
number, with this behavior being observed for both types of malaria. With the exception 
of Rondônia, all the states presented a decline in notifications between 2013 and 2016, 
followed by an increase in Vivax malaria in 2017. It was noted that four states (Acre, 
Amapá, Maranhão and Roraima) had an increase in the number of Falciparum malaria 
cases in 2016. 

Table 4 - Number of total cases of malaria of the types Vivax and Falciparum, reported 
in the states of the Legal Amazon region (period 2013-2017) 

 Vivax Falciparum 

State/Year 2013 2014 2015 2016 2017 2013 2014 2015 2016 2017 

Acre 13,416 11,730 10,729 15,101 16,365 6,278 5,449 3,109 3,611 4,525 

Amapá 6,373 5,535 5,105 4,322 6,692 812 407 245 698 538 

Amazonas 36,153 30,596 36,824 24,113 41,217 4,524 4,432 3,398 1,757 4,084 

Maranhão 232 321 92 56 165 28 8 2 5 11 

Mato Grosso 539 817 1.023 439 460 150 12 10 2 2 

Pará 8,805 3,743 3,699 6,297 17,641 3,955 1,145 811 433 442 

Rondônia 8,349 5,308 2,767 2,283 2,214 387 854 565 506 489 

Roraima 2,232 2,672 3,143 2,597 5,366 169 221 73 300 75 

Source: Sivep-Malaria.  

Following selection of the municipalities, the data was aggregated by 
epidemiological weeks (according to the notification calendar provided by the National 
Notifiable Diseases Information System - SINAN), thereby constructing the time series, 
with a total of 261 points (or observations) per state, which are displayed in Figures 1 
and 2. 

As demonstrated in Figure 1, which depicts the time series of Vivax malaria cases, 
the Legal Amazon states do not have identical behavior for this form of the disease, and 
the following is highlighted: Amazonas and Amapá, which present seasonal behavior 
during the years studied, with the former experiencing peaks half way during the year 
(between weeks 20 and 30), while the latter displays peaks at the end of the year 
(between weeks 40 and 48); Pará and Roraima display little variability in the number of 
notifications between 2013 and 2016, but  register an  expressive increase in 2017; 
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lastly, there was a decline in the number of occurrences registered in Rondônia during 
this five-year period. 

 

 
 

Figure 1 – Time series of Vivax malaria cases, by state in the Legal Amazon region (period 2013-
2017). 

 

Figure 2 shows the time series of Falciparum malaria cases in the states of the 
region under study, highlighting the following results: the states of Maranhão and Mato 
Grosso registered very few occurrences and for some weeks (between 2014 and 2017), 
they did not notify any cases of this form of the disease; in the states of Amazonas and 
Acre, there was a decline in the number of cases in 2015 and 2016, followed by an 
increase in 2017. 
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Figure 2 – Time series of Falciparum malaria cases, by state in the Legal Amazon region 
(period 2013-2017). 

 

In a more detailed comparison between Figures 1 and 2, a higher number of 

notifications for Vivax malaria cases is observed in all the states of the Legal Amazon 

region. This result is expected since this form of the disease occurs on Brazilian 

territory with greater frequency. For the state of Acre, Vivax malaria presents similar 

behavior during the years analyzed, demonstrating little variability; for Falciparum 

malaria, a decline in the notification of cases for 2015 and 2016 is observed, but this 

increases once more in 2017. The state of Amapá displays seasonal behavior during the 

years studied for Vivax malaria, while very few occurrences are registered for 

Falciparum during this period. The state of Amazonas displays seasonal behavior for 

Vivax (over this five-year period) and Falciparum malaria (only between 2013 and 

2014, followed by a decline between 2015 and 2016). Maranhão is the state that 

presents the lowest number of records for both types of malaria: for Vivax, it displays a 

decline after 2014, while there are no Falciparum notifications in many epidemiological 

weeks (between 2014 and 2017). The states of Mato Grosso and Maranhão also present 

a decline in Vivax malaria between 2016 and 2017, while there are almost no 

Falciparum records of occurrences between 2014 and 2017, considering that no cases of 

the disease were notified in many epidemiological weeks. In turn, Pará displays the 
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opposite behavior for the two types of malaria studied: while Vivax retains a low 

variability between 2013 and 2016, followed by an increase in 2017, Falciparum 

registers a decline between 2013 and 2014, maintaining low variability between 2015 

and 2017. The state of Rondônia demonstrates a decrease in the number of Vivax 

notifications; there is similar behavior for Falciparum over the years analyzed, except 

for 2014, when there is an increase in the number of cases of this form of the disease. 

Lastly, the state of Roraima registers an increase in the number of Vivax malaria 

notifications for 2017, while there is an increase in Falciparum variability in 2016, 

when an increase in case notifications also occurs. 

3.2 Analysis and modeling the time series 

With the assistance of the descriptive analysis carried out in the previous section, 
we were able to identify that there was an absence of notifications of malaria cases in 
some states in various epidemiological weeks, for at least one of the forms of the 
disease studied, causing inflation or an excess of zeros. Therefore, these states were 
excluded in the final analysis, with only Acre, Amapá, Amazonas and Rondônia 
remaining. There is adequate treatment for this type of data in literature, considering 
time series models for excess zeros (or zero inflation) in count data (YANG, 2012; QI et 
al., 2019), but working with this approach is not within the scope of this study. In 
addition, due to the limitations of this article, only the results obtained for the state of 
Amazonas are presented, and those for the other three states can be found in the 
attachment available at: https://est.ufba.br/sites/est.ufba.br/files/anexo-artigo_tcc.pdf. 

The holdout validation technique was utilized, so that observations for the period 
2013-2016 are used to form the training group, and the remainder for 2017, to make up 
the test group. This method has proven useful in the process of model construction and 
validation (TANTITHAMTHAVORN et al., 2016). 

Figure 3 presents the time series of Vivax malaria case notifications, and their 
respective autocorrelation and partial autocorrelation functions for the state of 
Amazonas (period between 2013 and 2016). The behavior described in these plots 
indicates the presence of a seasonal component, which was taken into consideration 
during the modeling process. 
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Figure 3 – (A) Time series; (B) autocorrelation plot; (C) partial autocorrelation plot; (D) 
periodogram, for Vivax malaria in the state of Amazonas (period 2013-2016). 

 

Figure 4 displays the behavior of the series of notifications of Falciparum malaria 
cases, and their respective autocorrelation and partial autocorrelation functions. The 
standard observed in these plots suggests the presence of seasonality, also with Vivax 
malaria. Therefore, this component was taken into consideration in the modeling 
process. 
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Figure 4 – (A) Time series; (B) autocorrelation plot; (C) partial autocorrelation plot; (D) 
periodogram, for Falciparum malaria in the state of Amazonas (period 2013-2016). 

 

Table 5 presents the AIC measurements calculated to assist in identifying the time 
terms for the models adjusted to the series of Vivax and Falciparum malaria cases. The 
selection, based on the periodogram (Figures 3(D) and 4(D)), and removal of the 
seasonal effect, were the stages required to detect the time terms. Thus, the ARMA(1,1) 
and ARMA(2,1) models were selected for Vivax and Falciparum malaria, respectively, 
since they have lower AIC values. Nevertheless, the ARMA(1,1) model was also 
selected for Falciparum, since there are fewer parameters to be estimated. 

 
Table 5 – AIC values for the fitted models 

Vivax Falciparum 

Model AIC Model AIC 

ARMA(1,0)     2,509.20  ARMA(1,0)        1,843.97 

ARMA(2,0)     2,508.16  ARMA(2,0)        1,829.91 

ARMA(1,1)     2,507.86  ARMA(1,1)        1,825.09 

ARMA(2,2)    2,509.69  ARMA(2,1)       1,823.99 

ARMA(3,0)     2,509.83  ARMA(2,2)        1,826.89 
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The approach proposed in this study was then applied, based on adjustment of the 
GARMA model, in which the Poisson and Negative Binomial distributions were 
considered for the two series of malaria notifications. The following were used as 
predictor variables: average rainfall (in mm), average humidity (in %), and average air 
temperature (in °C), in which the multicollinearity between them was tested. Thus, the 
covariates that presented a VIF higher than 10 were excluded from the analysis, as 
described in Section 2.2.3. 

These variables are influential on the number of malaria cases, since they affect 
development of the disease vector. However, since they are expressed in distinct units 
of measurement, there was a need to transform these quantities, in which use of the 
logarithmic function (base e) was selected, with the value of 0.001 (“offset”) added to 
the records (purely for mathematical reasons) whose originally observed data was equal 
to zero. This transformation aims to reduce the effect of different magnitudes between 
the units of scale of the data observed. 

For the two series of malaria cases, the presence of multicollinearity was detected, 
which led to the removal of the humidity variable from analysis (with a VIF of 93.07 
and 30.25 for Vivax and Falciparum, respectively). 

Time and seasonal components were included for both series. The Wald test 
(WALD, 1943) was applied, where the variables which were statistically significant at 
the level of 5% for the model to continue, were verified. In addition, the precision of the 
estimates and residual behavior were also evaluated, with removal of the variables. 

Following adjustment of the GARMA models, a diagnostic analysis was carried 
out, and scoring rules calculated, in order to identify which model better adjusted to the 
data in each time series. According to Gneiting et al. (2007), the model with the lowest 
scorings is preferable/most appropriate. 

Figure 5 displays the results of the diagnostic analysis of the GARMA models 
adjusted to the data of the series of Vivax malaria cases for the state of Amazonas. It is 
observed that there is no serial correlation that has not been contained by the Negative 
Binomial GARMA model, as shown in the residual autocorrelation plot (Figure 5(A)). 
In addition, the Negative Binomial GARMA model was more precise for the estimates 
obtained, in line with the marginal calibration plot (Figure 5(B)), and there was a better 
probabilistic calibration of the predictive distribution, considering that the Probability 
Integral Transform (PIT) histogram (Figure 5(C)-(D)) better addresses uniformity. For 
further information on the marginal calibration plot and PIT histogram, see Gneiting et 
al. (2007) and Czado et al. (2009), respectively. The same behavior was observed in the 
diagnostic analysis of the GARMA models adjusted to the time series of Falciparum 
malaria cases (see Figure 9, Appendix B). 
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Figure 5 – Diagnostic analysis of the Poisson GARMA and Negative Binomial GARMA models 

fitted to the series of Vivax malaria cases. (A) Autocorrelation plot of residuals; (B) 
marginal calibration plot; (C) PIT histogram for the adjusted Poisson GARMA model; 

(D) PIT histogram for the adjusted Negative Binomial GARMA model. 

 
Analyzing the results (scoring rules) presented in Table 6, it is observed that the 

Negative Binomial GARMA model is most appropriate for both time series of malaria 
cases, being indicated by six scoring rules for Vivax, and all of the rules for Falciparum. 

 
Table 6 – Scoring rules for the fitted GARMA models 

Rule 
Vivax Falciparum 

Poisson NB Poisson NB 

Logarithmic  17.57 5.96 7.01 4.34 

Quadratic  0.00 0.00 0.00 -0.02 

Spherical  -0.05 -0.06 -0.09 -0.13 

Rankprob 77.48 46.77 14.58 10.69 

Dawseb 32.68 10.13 11.85 6.91 

 Normsq 26.30 0.97 7.70 0.98 

Sqerror 17,236.26 9,123.38 601.32 379.85 

Note: NB = Negative Binomial. 
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Thus, the estimates (point and interval) of the parameters of the Negative Binomial 

GARMA models adjusted to the series of Vivax and Falciparum malaria cases are 

presented in Table 7. It is observed that the overdispersion coefficient 𝜎2, which is 

related to the dispersion parameter 𝜙 of the Negative Binomial distribution by 𝜎2 = 1/𝜙, 

presented a higher value for Vivax malaria when compared with Falciparum (37.04 

versus 12.05). 

 
Table 7 – Estimation results of the Negative Binomial GARMA models fitted to the 

series of Vivax and Falciparum malaria cases 
 Vivax Falciparum 

Parameter 
Estimate   S.E.  

 95% 

L.L.  

 95% 

U.L.   Estimate   S.E.  

 95% 

L.L.   95% U.L. 

𝛼0                1.326 0.375 0.590 2.062 0.902 0.199 0.511 1.293 

𝜆1              0.835 0.078 0.683 0.987 0.784 0.048 0.690 0.878 

𝛾1               -0.047 0.095 -0.234 0.139  -                     -               -                    -     

Temperature                             0.005 0.044 -0.081 0.090  -                     -               -                    - 

𝛽𝑠1            -0.066 0.024 -0.114 -0.018 -0.076 0.035 -0.145 -0.006 

𝛽𝑠2 0.048 0.018 0.014 0.083 0.053 0.032 -0.010 0.117 

𝜙 0.027  -               -                    -                   0.083  -               -                    - 

Note: S.E. = Standard Error, L.L. = Lower Limit, 

          U.L. = Upper Limit, 𝛼0= Intercept, 

              𝜆1 = autoregressive coefficient, 

              𝛾1 = moving average coefficient, 

             𝛽𝑠𝑖 = seasonality coefficient, i = 1, 2. 

 

3.3 Monitoring and forecasting new cases of the disease 

Following definition of the final GARMA models (Negative Binomial GARMA 
for both series of malaria cases), the residual control charts of these models were 
constructed, in order to verify if the processes in question are under statistical control 
(phase 1 or retrospective analysis). 

Figure 6(A) displays the control chart for the residuals of the Negative Binomial 
GARMA model adjusted to the series of Vivax malaria cases. From this chart, it is 
verified that the process is under statistical control, considering that no point exceeded 
the control limits. 
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Figure 6 – Control charts for the residuals of the Negative Binomial GARMA models fitted to the 

malaria cases series of the types: (A) Vivax; (B) Falciparum. 

 
Figure 6(B) shows the control chart for the residuals of the Negative Binomial 

GARMA model adjusted to the series of Falciparum malaria cases. It is observed that 
this process is out of statistical control, since one point exceeded the control limits, 
indicating a possible outbreak of Falciparum malaria in the state of Amazonas. 

Forecasts (of the number of cases of the two series of the disease) were then made, 
considering five steps ahead (in other words, five epidemiological weeks).    The control 
limits to monitor future observations of the two processes in question, were calculated 
according to a quality policy 6σ (w = 3 or, equivalently, α = 0.0027).  In addition, the 
behavior of these processes was verified, with the insertion of new observations of the 

test set (2017), compared with the 3rd quartile charts (phase 2 of the analysis, or 
monitoring). Proposed by Braz (2005) in a study which had the objective of the early 
detection of malaria epidemics in the Legal Amazon region, this type of control chart is 
currently used by the MS to monitor and control malaria. 

As shown in Figure 7, the process related to the number of Vivax malaria cases 
will be out of statistical control, according to the two methodologies used: the Negative 

Binomial GARMA model (Figure 7(A)) and 3rd quartile method (Figure 7(B)), 
considering that some observations exceeded the control limits established. Under the 
approach of the Negative Binomial GARMA model, only the number of cases in 
epidemiological week 1 exceeded the UCL, indicating a possible outbreak. In relation to 

the approach of the 3rd quartile method, the lack of statistical control for 
epidemiological weeks 1-5 was signaled, which is indicative of a possible future Vivax 
malaria epidemic in the state of Amazonas. 
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Figure 7 – Control charts for monitoring future observations of the process regarding Vivax-type 

malaria: (A) Negative Binomial GARMA model; (B) 3rd quartile method. 

 
In Figure 8, it is observed that the process related to the number of Falciparum 

malaria cases will be out of statistical control according to the 3rd quartile method.  
Under the approach of the Negative Binomial GARMA model (Figure 8(A)), the lack of 
statistical control for the five following epidemiological weeks was not signaled. While 

in the approach of the 3rd quartile method (Figure 8(B)), epidemiological weeks 1-2 
and 5 were detected as a possible future Falciparum malaria epidemic in the state of 

Amazonas. 
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Figure 8 – Control charts for monitoring future observations of the process regarding Falciparum-

type malaria: (A) Negative Binomial GARMA model; (B) 3rd quartile method. 

 

It is interesting to observe that the chart to monitor future observations of the 

process, based on the Negative Binomial GARMA model, presents the UCL and LCL, 

considering that the latter is also of major relevance, since although it does not identify 

possible outbreaks/epidemics, it may indicate a possible underreporting of cases, since 

the values observed are lower than that estimated for the LIC. When inserting new 

observations, it is important to review the model, in order to attain more precise 

forecasts. In addition, we recommend not forecasting many steps ahead, since the 

forecasts are obtained based on an estimate of the previous observation, and for every 

estimate there is an associated error, which tends to rise as the number of forecasts is 

added, thereby making them less accurate. 

Conclusions 

In the first instance, modeling for discrete count data with a time dependence 
structure for the number of Vivax, Falciparum and Mista malaria cases (separately) in 
the Legal Amazon region of Brazil was addressed in this research. The use of GARMA 
models for these time series of discrete data (counts) was then proposed, observing that 
the Negative Binomial distribution adjusted more adequately, when compared to the 

Poisson distribution, since the former was able to consider the overdispersion present. 

Application of the control chart for GARMA model residuals in phase 1 
(retrospective analysis), was shown to be appropriate, considering that the process of 
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interest (related to Vivax, Falciparum and Mista malaria cases) is influenced by 
explanatory variables, with no great correlation identified between them, together with 
the time dependence structure considered in the modeling. 

It was also observed that the control chart proposed to monitor future observations 

of the process produced similar results to those of the 3rd quartile (or method) chart, 
with the latter currently being used by the MS of Brazil to identify malaria outbreaks or 
epidemics (BRAZ, 2005). It is important to highlight that we do not have a gold 
standard, i.e., reliable and concrete information on the occurrence, or otherwise, of a 
malaria outbreak/epidemic in the Legal Amazon region in the weeks analyzed. We 
should highlight that the proposal based on the GARMA model has the advantage of 
making forecasts (since it is a probabilistic approach) and, therefore may foresee the 
emergence of atypical/undesirable phenomena, and contribute towards directing 
intervention measures, i.e., control actions with a view to combating the spread of the 
disease. In addition, the control limits of the proposed chart may be used to define 

epidemic thresholds, as in the 3rd quartile chart. Registering a number of cases of the 
disease which is higher than the UCL may indicate an outbreak (in the case of a single 
overshoot), or epidemic (in the case of successive overshoots), while registering a 
number that is lower than the LCL may indicate possible underreporting. 

As suggestions for future study, the following is important: (i) to investigate the 

performance of the method proposed to monitor new observations of the process, 

compared with the usual 3rd quartile method, considering a gold standard (known 

status) for outbreaks and epidemics in the Amazon region; (ii) to carry out numerical 

simulations using a calibration/tuning process, to improve the performance of the 

method proposed, investigating the effects associated with estimating the model 

parameters on the constructed control chart performance in greater detail (JENSEN et 

al., 2006); (iii) to consider other models for counting processes, such as the state-space 

models (DURBIN and KOOPMAN, 1997; SHEPHARD and PITT, 1997) and the 

GARMA model extensions/modifications (CORDEIRO and ANDRADE, 2009; 

ALBARRACIN et al., 2019); (iv) to evaluate the existence of spatial dependence in the 

states in the region, and consider this in the modeling process, which is an area that has 

been underdeveloped in the study of diseases (LYRIO, 2019); and (v) to use 

multivariate SPC techniques to both model and monitor the occurrence of Vivax, 

Falciparum and Mista malaria cases. 
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▪ RESUMO: A malária ainda é uma doença fatal em muitos países ao redor do mundo. 

Estabelecer medidas de controle e prevenção dessa doença é uma preocupação mundial 

desde 1950, quando a Organização Mundial da Saúde lançou um Plano de Erradicação da 

Malária. No Brasil, a malária foi eliminada em grande parte do território, porém resistindo 

em uma área conhecida como Amazônia Legal. Posto isto, o escopo principal deste trabalho 

consiste em desenvolver gráficos de controle estatístico que considerem a estrutura de 

dependência temporal existente nos dados e sejam adequados para o monitoramento atual e 

futuro dos casos de malária, com o intuito de detectar possíveis surtos ou epidemias em 

estados da região da Amazônia Legal. As ferramentas aqui apresentadas poderiam, ainda, 

colaborar no direcionamento das ações de controle e no combate à propagação da doença. 

Em particular, pretende-se: (i) construir um modelo estatístico para previsão de ocorrências 

de casos da doença, o qual considere a existência de uma possível estrutura de dependência 

temporal entre os dados coletados; (ii) utilizar as técnicas de Controle Estatístico de 

Processos (CEP), notadamente os gráficos de controle, para monitorar (separadamente para 

cada forma da doença) os casos de malária dos tipos Plasmodium Vivax, Plasmodium 

Falciparum e Plasmodium Mista na região amazônica; (iii) estabelecer limiares epidêmicos 

com base nos gráficos de controle obtidos. Considerando dados de 2013 a 2017, o presente 

estudo revelou, dentre outros, que os modelos generalizados autorregressivos e de médias 

móveis com distribuição Binomial Negativa (modelos GARMA Binomial Negativo) se 

mostraram mais eficientes, ajustando-se melhor, comparativamente aos modelos GARMA 

Poisson, devido à superdispersão existente nos dados analisados. 

▪ PALAVRAS-CHAVE: Gráfico de controle, modelos GARMA, monitoramento estatístico, 

previsão, superdispersão. 
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Appendix A 

Table 8 - Codes of the municipalities selected for the analysis of malaria of the types 
Vivax and Falciparum 

 Vivax     Falciparum  

State / Year 2013 2014 2015 2016 2017 2013 2014 2015 2016 2017 

 

Acre 1200203 1200203 1200203 1200203 1200203 1200203 1200203 1200203 1200203 1200203 

 1600402 1600402 1600154 1600600 1600600 1600204 1600600 1600402 1600402 1600402 

Amapá 1600303 1600600 1600055 1600402 1600204  1600303    

 1600204 1600303 1600204 1600204 1600402      

 1301407 1302405 1302603 1303809 1303809 1301407 1302405 1300201 1303601 1303601 

 1302603 1302603 1301803 1302603 1302603 1302405 1300201 1302405 1300201 1300409 

 1303809 1303809 1301407 1300409 1300409 1300201 1301407 1301803 1301654  

Amazonas 1301803 1301407 1303809 1300201 1303601 1301803 1301654 1303601 1300409  

 1302405 1300409 1302405  1301209 1301654  1301654   

 1303908 1301209 1300409  1301654   1300409   

 1300201 1301803 1303908        

 1304062 1300201         

 2109270 2100550 2100550 2102606 2114007 2112456 2112456 2111672 2112407 2105351 

Maranhão 2112456 2102606 2102606 2104677 2102606  2109809 2104800 2109239  

 2102606 2103307 2103307 2103174 2103174    2104008  

Mato Grosso 5103254 5103254 5103254 5103254 5103254 5103254 5103254 5103254 5103254 5106752 

 

Pará 

1503606 

1503754 

1503606 1503606 

1500701 

1500701 

1501808 

1501105 

1500701 

1503606 1503606 1500701 1503606 1503606 

    1507706 1505205      

    1503606       

Rondônia 1100205 1100205 1100205 1100205 1100205 1100205 1100205 1100205 1100205 1100205 

 1400027 1400027 1400050 1400050 1400472 1400027 1400027 1400027 1400027 1400175 

Roraima 1400506 1400506 1400472 1400027 1400175 1400472     

 1400175 1400209 1400027 1400472       

 Source: Sivep-Malaria. To consult the chosen municipalities, access the link: 

https://www.ibge.gov.br/explica/codigos-dos-municipios.php. 
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Appendix B 

 

 
Figure 9 – Diagnostic analysis of the Poisson GARMA and Negative Binomial GARMA models 

fitted to the series of Falciparum malaria cases. (A) Autocorrelation plot of residuals; 
(B) marginal calibration plot; (C) PIT histogram for the adjusted Poisson GARMA 
model; (D) PIT histogram for the adjusted Negative Binomial GARMA model. 

 

 


