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Baśılio de Bragança PEREIRA3

Carlos Alberto de Bragança PEREIRA4

ABSTRACT: In December of 2019, a new coronavirus was discovered in the city of

Wuhan, China. The World Health Organization officially named this coronavirus as

COVID-19. Since its discovery, the virus has spread rapidly around the world and is

currently one of the main health problems, causing an enormous social and economic

burden. Due to this, there is a great interest in mathematical models capable of

projecting the evolution of the disease in countries, states and/or cities. This interest is

mainly due to the fact that the projections may help the government agents in making

decisions in relation to the prevention of the disease. By using this argument, the health

department of the city (HDC) of Campo Grande asked the UFMS for the development

of a mathematical study to project the evolution of the disease in the city. In this

paper, we describe a modeling procedure used to fit a piecewise growth model for the

accumulated number of cases recorded in the city. From the fitted model, we estimate

the date in which the pandemic peak is reached and project the number of patients who

will need treatment in intensive care units. Weekly, was sent to HDC a technical report

describing the main results.
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1 Introduction

On February 26th of 2020, the first case of COVID-19 was confirmed in Brazil.
A man 61-years-old resident in the city of São Paulo, SP, Brazil. And on March
14th of 2020, the first case was confirmed in the city of Campo Grande, MS, Brazil.
From the first case, the health department of the city (HDC) of Campo Grande
asked the Federal University of Mato Grosso do Sul (UFMS) for the development
of a mathematical model to monitor and project the evolution of the disease in
the city. The HDC argued that the modeling results would serve to support some
decisions in relation to disease prevention, such as, proposing the intensification of
social isolation, the purchase of hospital equipment, an increase in the number of
intensive care units in public hospitals, among others.

From the request of the HDC, the authors of this paper began a study with the
aim of fitting a growth model for the accumulated number of the COVID-19 cases
recorded in the city of Campo Grande. The modeling was started by calculating the
main descriptive statistics, followed by the fit of the most known growth model, the
exponential model. However, as described by several epidemiological studies the
number of people becoming ill in an epidemic grows until a limit (MEYER, 1999);
and not indefinitely as described by the exponential model. Due to this, it is usual
to consider that the growth process of the number of cases of a disease is given by
a model in which the graphic is a sigmoidal curve (S-shaped curve).

Thus, besides the exponential model, we also consider the fit of the Logistic
and Gompertz growth models. Both models are characterized by an S-shape curve
defined by two distinct phases. The first phase is characterized by growth at an
increasing rate (positive slope) and the second phase is characterized by growth
at a decreasing rate (negative slope). The point in which the curve changes the
slope (positive to negative) is called the inflection point. In the context of an
epidemiological study, this point indicates when the pandemic peak is reached. The
choice for these two growth models is based on studies described in the literature
that indicate that both models are excellent for use in quantitative longitudinal
data, see for example Budimulyati et al., (2012) and its references.

However, in the course of the study, we noticed that the fit of a single growth
model would not be suitable, since the recorded values indicated a change in the
pandemic’s growth behavior. Due to this, we adopted the fit of a piecewise growth
model. In order to fit a piecewise model, we separated the dataset into four sub-
datasets. This separation was done in the course of the analysis using the model
with the lowest mean square error as a criterion for choosing the separation point.

For each one of the sub-datasets, we fit the three growth models; where the
estimates for the parameters of the models were obtained using the non-linear
least square method, as decribed by Vieira and Hoffman (1977) and Hsieh (2017).
To choose the best model for each sub-dataset, we consider as a criterion the
mean square error (MSE) and the model selection criteria Akaike Information
criterion (AKAIKE, 1974; BOZDOGAN, 1987), denoted by AIC, and the Bayesian
Information criterion (SCHWARZ, 1978), denoted by BIC. This procedure allowed
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us to get a fitted model with the smallest mean square error among the tested
models. The resulting piecewise growth model has the following configuration:
Gompertz, Gompertz, Exponential and Gompertz model.

Based on the fitted model, we get the coordinates of the inflection point and
consequently the estimated date for the peak of the pandemic. In addition, using a
moving-sums procedure, we project the number of patients who will need treatment
in the clinical units and in intensive care units. These pieces of information were sent
weekly to the HDC in a technical report format. Until 11/08/20 were sent twenty
one technical reports to HDC. However, in this paper, we focus on describing the
modeling procedure adopted to obtain the piecewise model. That is, we focus on
the four periods in which happened the change in the pandemic’s growth behavior.
If it is of interest to the reader, the technical reports sent to HDC can be obtained
upon request by email to the authors.

The remainder of the paper is organized as follows. In section 2, we present
the data and the three growth models considered. Section 3, describes the modeling
procedure adopted to get a piecewise growth model. Section 4, presents the
projections for the number of patients who will need care in clinical or intensive
care units. Section 5 concludes the paper with the final remarks. Additional details
are provided in the supplementary material, denoted by the prefix “SM” when
referred to in this paper.

2 Dataset and growth models

Let Xt be the number of recorded cases of COVID-19 in the city of Campo
Grande on the t-th day, for t = 0, . . . , T = 239, where t = 0 represents the day that
the first case was recorded (03/14/20) and T is the last day considered in the study
(11/08/20). This dataset is publicly available on the website www.sesau.gov.br. In
this period of 240 days, 37, 429 cases of COVID-19 were recorded and 696 people
died due to this disease. Besides, of the 37, 429 recorded cases, 36, 017 are considered
recovered and 601 people are in home isolation.

Our first analysis consists of visualizing the recorded values by using some
plots and by calculating the main descriptive measures. Figure 1 shows the number
of confirmed cases at the day t, for t = 0, . . . , T . The highest number of registered
cases at a day was 1, 434 cases on 09/11/20.

Figure 2 shows the barplot of the frequency distribution of the number of
cases confirmed by month. Out of the total cases, 0.80% (299 cases) were registered
in the months of March (38 cases), April (90 cases) and May (171 cases), 5.19%
(1,942 cases) in June, 22.12% (8,285 cases) in July, 29.21% (10,940 cases) in August,
24.78% (5,347 cases) in September, 14.61% (4,515 cases) in the October and 3.28%
(1, 230 cases) in the first eight days of November.

Table 1 shows the descriptive statistics for the number of cases recorded per
day. The median value is 109.50 confirmed cases, with an average of 155.95 recorded
cases by day and a standard deviation (S.D.) of 179.95 cases.
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Figure 1 - Confirmed number of cases by day.
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Figure 2 - Percentage of cases by month.
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Table 1 - Desciptive Statistics

Minimum 1o Quartile Median Average S. D. 3o Quartile Maximum

0 5.75 109.50 155.95 179.95 246.50 1,434.00

Figure 3 shows the graphic of the moving-average of seven days for the number
of recorded cases. In the last 21 days, the moving average value ramained inside the
range of ±10% of the average of the moving-average values of this period (dotted
lines). Due to this, we consider the confirmed number of cases was stable in this
period. The moving-average value on the 139th day (11/08/20) was of 154.86,
meaning that in the period from 11/02/20 to 11/08/20 was confirmed, in average,
154.86 case per day. Compared to the moving-average value of seven days ago
(157.57 on 11/01/20), there was a reduction of 1.72%. Compared to the moving-
average value of fourteen days ago (161.29 on 10/25/20), there was a reduction of
3.99%.
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Figure 3 - Moving-average of seven days.

Figure 14 in Appendix 1 of the SM shows the graphic of the moving-average
for the number of death. In the last four days, there was a reduction in the moving-
average value. On 11/08/20 the moving-average value was of 2 death. Compared
to the value of seven days ago (2.14 on 11/01/20), there was a reduction of 7%.
Compared to fourteen days ago (3.86 on 10/25/20) the reduction was of 58.38%.
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Figure 4 show the graphic of the accumulated number of cases in the original
scale and in the log-scale. Note the fast growth of the accumulated number of cases
after the 89th day (06/11/20). Our interest is to model the accumulated number
of cases using a nonlinear growth model. To facilitate the modeling procedure, we
opt to model the accumulated number of cases in the log-scale.

0 50 100 150 200

0
1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

Day

C
o
n
fi
rm

e
d
 c

a
s
e
s

06/11/20

(a) Original scale.
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Figure 4 - Accumulated number of cases.
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2.1 Growth models

In order to model the data described in the earlier section, consider Nt be the
accumulated number of COVID-19 cases at time t and f(t|θ) a nonlinear function
indexed by parameter θ (scalar or vector), for t > 0. Consider that Nt = f(t|θ) and
Yt = log(Nt) = g(t|θ), where g(t|θ) = log(f(t|θ)), for t > 0.

2.1.1 Exponential growth model

One of the most knows nonlinear models to describe the growth of an
epidemiology disease is the exponential model. Its Equation is given by

Nt = f(t|θ) = α1 exp{α2t}, (1)

for θ = (α1, α2), where α1 is the number of cases in the initial time, t = 0, and α2

is the growth rate, for t ≥ 0. For more details on the exponential model, please see
Abramowitz (1965), Thomson (2005) and their references.

Taking the logarithmic transformation on both sides of the Equation (1), one
gets the following linearized form of the model, called log-exponential model,

Yt = log(Nt) = α1 + α2t, (2)

for t ≥ 0.
Figure 15 in Appendix 2 of the SM shows the graphics of the exponential

and log-exponential models for an initial value α1 = 2 and growth rate
α2 = {0.10, 0.20, 0.30}. Increasing the value of α2 more inclined is the curve,
meaning a fast growth in the number of disease cases. In addition, the curve of
this model grows indefinitely regardless of the population size. This can be viewed
as a practical problem since the number of accumulated cases is restricted, for
instance, to the population size.

2.1.2 Logistic growth model

Consider now the Logistic growth model (BLUMBERG, 1968). Its Equation
is given by

Nt = f(t|θ) = α1 (1 + α2 exp{−α3t})−1
(3)

where θ = (α1, α2, α3) are the model parameters, for t ≥ 0.
In the opposite of the exponential model, this model has an S-shape curve and

consequently a growth limit. The parameter α1 is the upper asymptote. In the
context of the COVID-19 the value of α1 is an estimate for the maximum number
of cases. The parameter α2 is related to the coordinates (tm, Ntm) of the inflection

point, where tm = log(α2)
α3

and Ntm = α1

2 . The parameter α3 is the intrinsic growth
rate at the inflection point.

Taking the logarithmic transformation on both sides of the Equation (3), we
get the log-logistic model,

Yt = log(Nt) = log(α1)− log (1 + α2 exp{−α3t}) , for t ≥ 0. (4)
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Figure 16 in Appendix 2 of the SM shows the graphics of the logistic and
log-logistic models for a upper asymptote α1 = 10, 000, α2 = 5, 000 and α3 =
{0.15, 0.25, 0.55}. Similar to the exponential model, by increasing the value of the
parameter α3 more inclined is the curve. In that Figure, the symbols • represents
the inflection point.

2.1.3 Gompertz growth model

As the third growth model, consider the Gompertz model (GOMPERTZ, 1825;
WINSOR, 1932). Its Equation is given by

Nt = f(t|θ) = α1 exp {−α2 exp{−α3t}} , (5)

where θ = (α1, α2, α3) are the model parameters, for t > 0. The interpretation of
the parameters is similar to the described for the logistic model.

The graphic of the Gompertz model is also a curve with an S-shape. The
main difference in relation to the Logistic model is that the curve of the Gompertz
model is not symmetric in relation to the inflection point. While the ordinate of the
inflection point of the Logistic model is α1

2 , for the Gompertz model this ordinate
is approximately 37% of the α1 value.

Taking the logarithmic transformation on both sides of the Equation (5), we
get the log-Gompetz model,

Yt = log(Nt) = log(α1)− α2 exp{−α3t}, (6)

for t ≥ 0.
Figure 17 in Appendix 2 of the SM shows the graphics of the Gompertz

and log-Gompertz models for a upper asymptote α1 = 10, 000, α2 = 8 and
α3 = {0.10, 0.20, 0.40}. Similar to the exponential and logistic models, by increasing
the value of the parameter α3 more inclined is the curve. In that Figure, the symbols
• represents the inflection point.

3 Piecewise model

Consider now the fitting of a growth model for the accumulated number of
COVID-19 cases recorded in the city of Campo Grande. For this, assume that the
log-transformed measures, Yt, are generated according to the following model

Yt = g(t|θ) + εt,

where g(t|θ) is given by one of the Equations in (2), (4) or (6) and εt is a
random error assumed from a normal distribution with mean 0, variance σ2 and
Cov(εt, εt′) = 0, for t, t′ = 1, . . . , n and t ̸= t′. For more details on the normality
assumption, please see (VIEIRA and HOFFMANN, 1977; HSIEH, 2017; ZHAO,
2019).
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In order to get the parameter estimates, we adopt the nonlinear least square
method. For this, we use the software R (R CORE TEAM, 2020) and the command
nls of the package nlstools (FLORENT et al., 2015; PINHEIRO et al., 2020).
Besides, we compare the models using as a criterion the mean square error (MSE)
and the model selection criteria AIC and BIC, which are calculated according to
the following expressions

MSE =
1

n

n∑
t=1

(
Ŷt − Yt

)2

, AIC = −2l(θ̂|y)+2k and BIC = −2l(θ̂|y)+klog(n),

where Ŷt is the estimated value by the model, l(θ̂|y) = log(L(θ̂|y), in which, L(θ̂|y)
is the maximum value of the likelihood function for the model and k is the number
of estimated parameters in the model. The best model is the one that has the
smallest MSE, AIC and BIC values.

3.1 Model fitting 1

Our first analysis was done thirty days after the registration of the first case
(03/14/20). Thus, letD1 = {y0, . . . , y29} be the registered number of cases from day
0 (03/14/20) to 29th day (04/12/20) in an accumulated way and log-transformed.

Defined the dataset, we fit the three growth models described in Section 2.
Table 2 shows the MSE, AIC and BIC values for the three fitted growth models.
The smallest values are highlighted in bold. As one can note, the log-Gompertz
model is the best model.

Table 2 - MSE, AIC and BIC values

Model
Criterion

MSE AIC BIC

Log-Exponential 0.1771 39.2053 43.4089

Log-Logistic 0.0176 -28.0450 -22.4402

Log-Gompertz 0.0092 -47.2643 -41.6595

Table 3 shows the estimates and the standard errors for parameters of the
log-Gompertz model. The fitted model is given by

Ŷt = 3.9909− 3.9493 exp{−0.1346t}, for t > 0.

Table 3 - Parameter estimates

Values
Parameter

log(α1) α2 α3

Estimates 3.9909 3.9493 0.1346

Standard error 0.0460 0.0862 0.0070
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Figure 5 shows the graphic of the values of the dataset D1 and the fitted model
(black line) for a period of 50 days (from day 0 to day 49), being 30 of fitting and
20 of projection. The 49th day represents the date 05/02/20. The projection of the
fitted model for the 49th day is ŷ49 = 3.9862. By making the back-transformation,
this projection indicates that until the 49th day Campo Grande would register 54
cases of the COVID-19 disease.
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Figure 5 - Observed data and fitted model for D1.

However, as can be viewed in Figure 6, the recorded number of cases on the ten
days after the date 04/12/20 (from 04/13/20 to 04/22/20) has led to an accumulated
number of cases (log-transformed) that did not follow the projections done by the
fitted model. Due to this, we insert these ten accumulated values into the dataset
D1 and update the model.
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Figure 6 - Fitted model and data from 04/13/20 to 04/22/20.

Figure 7(a) shows the graphic of the accumulated values and the curve of
the updated model. The MSE of the updated model is 0.0252. That is, an MSE
value greater than the first fitted model. Besides, the accumulated number of cases
on 04/22/20 (97 cases) is greater than the estimate of the updated model for the
maximum number of cases (77 cases). This result made us to conjecture that a new
period with a different growth rate from the first 30 days could be beginning.

In order to empirically verify our conjecture, we registered the accumulated
values in the next 10 days after the date 04/22/20 (from 04/23/20 to 05/02/20)
and plot these values in the same cartesian plan of the updated model, as shown
by Figure 7(b). As one can note, our conjecture is very plausible. Due to this,
hereafter we adopt the fit of a piecewise growth model. The information on the
beginning of a new period of the pandemic’s growth, with a more aggressive growth
rate, was described in a technical report and repassed to HSC on 05/02/20.
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(a) data from 04/13/20 to 04/22/20.
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(b) data from 04/13/20 to 05/01/20.

Figure 7 - Fitted models and data from 04/13/20 to 05/01/20.

3.2 Model fitting 2

Let now the recorded number of cases in the first 60 days since the first
case (from 03/14/20 to 05/12/20) in an accumulated way and log-transformed.
Consider the separation of the this dataset into two sub-datasets as follows:
D1 = {y0, . . . , y28} and D2 = {y29, . . . , y59}. The choice o the 28th day to separate
the two sub-datasets was based on the criterion of smallest MSE among ten fitted
models. Please, see Appendix 3 of the SM for more details.

Defined the two sub-datasets, we fit the three growth model for each one of
the sub-datasets. Table 4 shows the MSE, AIC and BIC values for the three fitted
growth models for D1 and D2. The smallest values are highlighted in bold. For
both datasets, the Log-Gompertz is the best model.

Table 4 - MSE, AIC and BIC values

Model
Dataset D1 Dataset D2

MSE AIC BIC MSE AIC BIC

Log-Exponential 0.1667 35.2897 39.2863 0.0100 -50.4207 -46.0235

Log-Logistic 0.0170 -26.6779 -21.3490 0.0013 -112.7321 -106.8692

Log-Gompertz 0.0097 -42.2755 -36.9467 0.0012 -115.8826 -110.0197

Table 5 shows the estimates and the standard errors for parameters of the fitted
Log-Gompertz model for D1 and D2. The fitted model is given by the following
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piecewise model

Ŷt =

{
3.9738− 3.4417 exp{−0.1365t} , for 0 ≤ t < 29;
5.2288− 1.3354 exp{−0.0686t} , for t ≥ 29;

. (7)

Table 5 - Estimates for model parameters

Values
Model parameters for D1 Model parameters for D2

log(α1) α2 α3 α1 α2 α3

Estimates 3.9738 3.4417 0.1365 5.2288 1.3354 0.0686

Standard error 0.0525 0.0723 0.0077 0.0441 0.0376 0.0055

Figure 8(a) shows the graphic of the values of the sub-datasets D1 and D2 and
the fitted model (black line), for a period of 80 days (from day 0 to day 79), being
60 of fitting and 20 of projection. The 79th day represents the date 06/01/20. The
MSE of the fitted piecewise model is 0.0019.

However, as can be viewed in Figure 8(b), the registered values in the 20 days
after 05/12/20 indicate the beginning of a third growth period. Again we informe
the HSC on the beginning of a third growth period of the pandemic with a more
aggressive growth rate. Then, we consider the following model fitting 3.
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(a) data from 04/13/20 to 04/22/20.
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(b) Data from 04/13/20 to 06/01/20.

Figure 8 - Fitted model and data from 04/13/20 to 06/01/20.

3.3 Model fitting 3

Consider now the accumulated number of cases (log-transformed) recorded in
the period from 03/14/20 (day 0) to 06/11/20 (day 89). Let D1 = {y0, . . . , y28}
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and set up D2 = {y29, . . . , y60} and D3 = {61, . . . , 89}. The choice o the 60th day
to separate the two sub-datasets was also based on the criterion of smallest MSE as
done for separating the sub-datasets D1 and D2. Please, see Appendix 3 for more
details.

The fitted model for D1 remains as describe in Equation (7). For the
sub-dataset D2, we fit the three growth models and again the log-Gompertz
model presents the smaller MSE, AIC and BIC values. For the sub-dataset D3

was not possible to fit the log-logistic and the log-Gompertz models due to the
non-convergence of the estimation algorithm. Thus, a log-exponential model was
fitted to the sub-dataset D3. Table 6 shows the estimates and the standard errors
for parameters of the fitted log-Gompertz model for D2 and log-exponential model
to D3.

Table 6 - Estimates for model parameters

Values
Model parameters for D2 Model parameters for D3

log(α1) α2 α3 α1 α2

Estimates 5.2337 1.3394 0.0681 5.1039 0.0361

Standard error 0.0411 0.0351 0.0052 0.0090 0.0006

The fitted model is given by the following piecewise model

Ŷt =

 3.9738− 3.4417 exp{−0.1365t} , for 0 ≤ t < 29;
5.2337− 1.3394 exp{−0.0681t} , for 29 ≤ t < 61;
5.1039 + 0.0361t , for t ≥ 61;

. (8)

The MSE of this fitted piecewise model is 0.0093. Figure 9(a) shows the
graphic of the recorded values and the fitted model for a period of 139 days (from
03/14/20 to 07/31/20). Figure 9(b) shows the graphic of the fitted model and the
accumulated values registered in the period from 06/11/20 to 07/31/20. As one can
note, the registered values in this period do not follow the projection of the fitted
model. Following the same procedure, we inform the HSC the beginning of the
fourth growth period of the pandemic with a more aggressive growth rate. Then,
we consider the following model fitting 4.
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Figure 9 - Fitted model and data from 04/13/20 to 04/22/20.

3.4 Model fitting 4

For the fourth model fitting, consider the number of recorded cases in the
period from 03/14/20 (day 0) to 07/31/20 (day 139). Let D1 = {y0, . . . , y28},
D2 = {y29, . . . , y60}, D3 = {y61, . . . , y88} and D4 = {y89, . . . , y139}. Please, see
Appendix 3 of the SM for details on the criterion used to separate the sub-datasets.

The fitted models for D1, D2 and D3 remains as describe in Equation (8). We
fit the three growth models for sub-dataset D4. The Log-Gompertz model presents
the smaller MSE, AIC and BIC values. Thus, the piecewise model has the following
configuration: Log-Gompertz for D1, Log-Gompertz for D2, Log-exponential for
D3 and Log-Gompertz for D4.

The fitted model is given by the following piecewise model

Ŷt =


3.9738− 3.4417 exp{−0.1365t} , for 0 ≤ t < 29;
5.2337− 1.3394 exp{−0.0681t} , for 29 ≤ t < 61;
5.2647 + 0.0350t , for 61 ≤ t < 89;
11.5845− 5.4009 exp{−0.0167t} , for t ≥ 89;

.

The MSE of this fitted piecewise model is 0.0099. Figure 10 shows the graphic
of the registered values and the fitted model for a period of 200 days (from 03/14/20
to 09/30/20). The inflection point coordinates are (190, 11.5845). That is, the peak
of the pandemic is projected for the 190th day (09/20/20) with 107, 420 cases.
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Figure 10 - Fitted model and data from 04/13/20 to 09/30/20.

Figure 11 shows the graphic of a model update run on the 154th day
(08/15/20). As one can note, the registered values in the period from 08/01/20
to 08/15/20 have led to a flattening of the curve. The inflection point coordinates
is (168, 10.7469). That is, the peak of the pandemic is projected for the 168th day
(08/25/20) with 46, 486 cases.

After the date 08/15/31, we update the model more five times, on 09/15/20,
09/30/20, 10/15/20, 10/31/20 and on 11/08/20. Figure 12 shows the curves of
Figure 11 and the curve of the fitted model on the 239th day (11/08/20). As one
can note, there was a significant flattening between the fitted model on 07/31/20
and the fitted model on 08/15/20. However, models fitted after 08/15/20 presented
smaller flattening. Due to this, in order to maintain a good visualization of graphs,
we opt to plot only the curves of these three fitted models. This last updated model
has the following piecewise Equations

Ŷt =


3.9738− 3.4417 exp{−0.1365t} , for 0 ≤ t < 29;
5.2842− 1.3905 exp{−0.0637t} , for 29 ≤ t < 61;
5.2647 + 0.0350t , for 61 ≤ t < 89;
10.7074− 4.6035 exp{−0.0222t} , for t ≥ 89;

. (9)

The peak is estimated to the 158th day (08/19/20). The projection for the
maximum number of cases is 44, 685. Appendix 4 present a discussion on the
residuals analysis of the fitted model. The information on the flattening of the
curve was described in a technical report and repassed to HSC on 08/12/20.
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4 Projections

In addition to estimates for the peak of the pandemic, the fitted model allows
to project the number of cases that will be registered in next days. For example,
Table 7 shows the projections for the seven days after the date 11/08/20. This
Table also shows the registered values, the error (absolute) and the percent error
(absolute) of the projections in relation to the real values. The biggest percentage
error was 1.4507%.

Table 7 - Projections and percentage error for period from 11/09/20 to 11/16/20

Date 11/09 11/10 11/12 11/13 11/14 11/15 11/16

Projection 37,634 37,776 37,915 38,053 38,187 38,320 38,450

Real value 37,551 37,726 37,885 38,140 38,484 38,781 39,016

error 83 50 30 87 297 461 566

% error 0.2210 0.1325 0.0792 0.2281 0.7717 1.1887 1.4507

Another interest is to project the number of individuals who will need care
in clinical care units and in intensive care units. In order to get these projections,
we consider the projected values by the fitted model and a moving-sum procedure,
in which, the number of clinical units occupied on a day d1 is considered available
after 5 days. For the intensive care units, a unit is considered available after 14
days. In addition, we consider that 10% of the projected values by the fitted model
will needs care in clinical units and 3% in intensive units. Both percentual values
were fixed according to the percentage observed in the data.

Figure 13 shows the graphic with the projections. According to the projections,
on the 240th day (08/11/20) were expected 65 individuals in care in clinical units
and 50 individuals in intensive care units. These values are highlighted in the
graphics by the symbol •. The registered values were 63 in clinical care units and
52 in intensive care units.

In addition, the projections show that the peak for the number of patients
who will need care in clinical and intensive care units has already happened. The
peak for the number of patients who would need care in clinical units was estimated
for the 169th day (08/30/20). And the peak for the number of patients who would
need care in intensive care units was estimated for the 166th day (08/27/20). Since
the health public system of Campo Grande city has available 341 clinical units and
157 intensive care units, these results indicated no evidence for the collapse of the
public health system. These pieces of information were sent to HDC on 09/11/20.
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Figure 13 - Projections.

5 Final Remarks

In this paper, we describe a study on the evolution of the COVID-19 pandemic
in the city of Campo Grande, MS, Brazil. The aim of this study was to find out a
non-linear growth model for the accumulated number of COVID-19 cases. However,
in the course of the analysis, the data have presented temporal heterogeneity and
due to this, we adopt the fitting of a piecewise growth model. The main advantage
of this procedure is that it allowed us to obtain a model with the smallest MSE
among the tested models.

The modeling procedure was developed by separating the accumulated number
of cases registered in a period of 240 days into four sub-datasets. Then, we fitted
the three non-linear growth models for each sub-dataset: Exponential, Logistic and
Gompertz. In order to select the best model for each sub-dataset, we consider
as criteria the MSE, the AIC and BIC. The fitted model has the configuration:
Gompertz, Gompertz, Exponential and Gompertz. The resulting piecewise model
project the peak of the pandemic for the 158th day (08/19/20). In addition, the
projections do not show evidence for the collapse of the public health system of the
city.

From a practical viewpoint, these results are very important since the
prediction for the peak of the pandemic and projections that indicates the possibility
or not for the collapse of the public health system may help government-agents to
make a decision in order to try to reduce the transmission of the disease and to avoid
the collapse of the health public system. Besides, the results may be used by public
agents to show the population the importance to follow the recommendations of
specialists from the health field and to maintain social isolation whenever possible.

258 Rev. Bras. Biom., Lavras, v.39, n.1, p.240-265, 2021 - doi: 10.28951/rbb.v39i1.542



In the course of these 240 days, were sent to HSC 21 technical reports
describing the main results and the projections for the peak and possibility of the
collapse of the clinical and intensive care units. In addition, the results of this
study were used by many media to inform the population of Campo Grande on the
evolution of the pandemic and to emphasize the importance of the collaboration of
the population to reduce the transmission.

Although the article does not present any innovative mathematical and/or
statistical result, the results showed to be very important for government agents of
the city of Campo Grande, especially to justify actions to combat the proliferation of
the disease. In addition, due to the need for a quick response, the use of consolidated
models and well described in the literature proved to be the best alternative for the
moment; since the development and validation of new models, would require a more
long period of research. The computational codes used for fitting the models are in
the R language and can be obtained by e-mail to the authors.
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partes para modelagem do número acumulado de casos da COVID-19 na cidade de
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RESUMO: Em dezembro de 2019, um novo coronav́ırus foi descoberto na cidade

de Wuhan, na China. A Organização Mundial da Saúde nomeou oficialmente este

coronav́ırus como COVID-19. Desde sua descoberta, o v́ırus se espalhou rapidamente

pelo mundo e atualmente é um dos principais problemas de saúde, causando um enorme

ônus social e econômico. Devido a isto, há um grande interesse em modelos matemáticos

capazes de projetar a evolução da doença em páıses, estados e/ou munićıpios. Esse

interesse se deve principalmente ao fato de que as projeções podem auxiliar os agentes

governamentais na tomada de decisões em relação à prevenção da doença. Utilizando

este argumento, a secretaria de saúde do munićıpio de Campo Grande solicitou à UFMS

o desenvolvimento de um estudo matemático para projetar a evolução da doença no

munićıpio. Neste artigo, descrevemos o procedimento de modelagem usado para ajustar

um modelo de crescimento por partes para o número acumulado de casos registrados na

cidade. A partir do modelo ajustado, estimamos a data em que o pico da pandemia

é atingido e projetamos o número de pacientes que necessitarão de tratamento em

unidades de terapia intensiva. Semanalmente, enviamos a secretária de saúde da cidade

um relatório técnico descrevendo os principais resultados.

PALAVRAS-CHAVE: Modelos de crescimento, Estimação, Mı́nimos quadrados não

linear, Seleção de modelos.
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Supplementary Material of the Paper

“A piecewise growth model for modeling the
accumulated number of COVID-19 cases in the

city of Campo Grande”

Appendix 1: Moving-average for number of death

Until 11/08/20, 698 people have died due to COVID-19 in Campo Grande city.
Figure 14 shows the moving-average of seven days for the number of death. In the
last four days, there was a reduction in the moving-average value. On 11/08/20 the
moving-average value was 2 death. Compared to the value of seven days ago (2.14
on 11/01/20), there was a reduction of 7%. Compared to fourteen days ago (3.86
on 10/25/20) the reduction was 58.38%.
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Figure 14 - Moving-average for number of death.
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Appendix 2: Growth models

In this appendix, we present the graphics of the growth models described
in Section 2 of the paper. Figure 15 shows the graphics of the exponential and
log-exponential models. Increasing the value of the α2 more inclined is the curve.
As a characteristic, the graphic of this model shows unlimited growth.
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Figure 15 - Exponencial and Log-Exponencial models.

Figure 16 shows the graphics of the Logistic and log-Logistic models. As a
characteristic, the graphic of this model has an S-shape. Similar to the exponential
model, by increasing the value of the parameter α3 more inclined is the curve. In
that Figure, the symbols • represents the inflection point.
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(a) Logistic.
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Figure 16 - Loǵıstic and Log-Logistic models.
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Figure 17 shows the graphics of the Gompertz and log-Gompertz models. As a
characteristic, the graphic of this model has an S-shape. Increasing the value of the
parameter α3 more inclined is the curve. In that Figure, the symbols • represents
the inflection point.
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(a) Gompertz.
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Figure 17 - Gompertz and Log-Gompertz models.

Appendix 3: Sub-datasets

In order to get a point d that best separates the sub-datasets D1 and D2, we
adopt the following procedure. Let G = {25, . . . , 34} be a grid from 25 to 34 with
increments of size 1. Then, we define the following 10 scenery: D1 = {y0, . . . , yd}
and D2{yd+1, . . . , y59}, for d ∈ G.

For each one of the 10 scenery, we fit the three growth models to sub-datasets
D1 andD2. We select the best model by using as a criterion the AIC and BIC. For all
10 scenery considered, the fitted model has the following configuration: Gompertz
for D1 and Gompertz for D2.

Table 8 shows the MSE values from ten fitted models. The point d = 28 has
lead to a fitted model with the smallest MSE value. Due to this, we set up d = 28
as the separation point for D1 and D2.

Table 8 - Mean square error for 10 models fitted for D1 and D2

Point d 25 26 27 28 29 30 31 32 33 34

MSE 0.0058 0.0056 0.0054 0.0052 0.0055 0.0056 0.0060 0.0066 0.0068 0.0084
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To separate sub-datasets D2 and D3, we follow the same procedure described
above for d ∈ G = {55, . . . , 64}. As can be seen, the point d = 60 has lead to a
fitted model with the smallest MSE value. As shown by Figure 9(b) there is a clear
separation on the day 88. Due to this, we set d = 88 for separating D3 and D4.

Table 9 - Mean square error for 10 models fitted for D2 and D3

Point d 55 56 57 58 59 60 61 62 63 64

MSE 0.0040 0.0040 0.0039 0.0039 0.0038 0.0039 0.0039 0.0041 0.0041 0.0042

Appendix 4: Residuals Analysis

After fitting the model, it is necessary to verify that the assumptions made
are satisfied. In order to verify the normality assumption, we adopt the graphical
method based on the qq-plot. This method consists of the plot the percentiles of the
sample against the percentiles expected by the adjustment of a normal distribution.
Figure 18(a) shows the qq-plot graphic for the residuals of the fitted model (see
Equation 9). We also apply the Shapiro normality test, getting a p-value equal to
0.0959. That is, for a significance level {0.01, 0.05} the normality assumption is not
rejected. Figure 18(b) shows the graphic of the residuals against order of the data.
As one can note, there is no reason to doubt the independence and homoscedasticity
assumptions.
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Figure 18 - QQ-plot and Residuals versus order.
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