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ABSTRACT: We develop best linear unbiased predictors (BLUP) of the latent values

of labeled sample units selected from a finite population when there are two distinct

sources of measurement error: endogenous, exogenous or both. Usual target parameters

are the population mean, the latent values associated to a labeled unit or the latent

value of the unit that will appear in a given position in the sample. We show how both

types of measurement errors affect the within unit covariance matrices and indicate how

the finite population BLUP may be obtained via standard software packages employed

to fit mixed models in situations with either heteroskedastic or homoskedastic exogenous

and endogenous measurement errors.
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1 Introduction

Predicting the latent value (expected value) of a variable for a sample unit on
which some measurements are made is a common problem in Applied Statistics.
Sometimes, the response variable is subject to different sources of variability
associated to measurement errors as indicated in Cochran (1977) or observation
errors as termed by Sukhatme et al. (1984). Two sources of measurement errors can
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be identified. The first is related to the natural variability of the unit responses and
is referred to as inherent variability in the terminology introduced by Buonaccorsi
(2006) or response error by Särndal, Swensson and Wretman (1992). The second
is associated with the measuring conditions and it corresponds to the variability of
the measures around a fixed value (the latent value), produced by the measurement
instruments or interviewers, for example. To clearly differentiate between the two
types of measurement errors, we refer to the first as endogenous measurement errors
and to the second, as exogenous measurement errors.

Endogenous measurement errors may occur even if the measuring is made
with absolute precision (i.e., with no exogenous measurement error). The monthly
expenditure with food for a given family is an example; the expenditure may vary
from month to month around a latent value, but can be measured without error.
Measurement of an adult’s height by different observers may serve as an example of a
situation where there is only exogenous errors. The results of the daily measurement
of a patient’s cholesterol level may serve as an example of a situation where both
endogenous and exogenous measurement errors are present.

As an example, we consider data for a subset of 13 participants in the project
Seasonal Variability of Blood Lipids, NHLBI, number R01-HL52745 (MERRIAM
et al., 1999). Data in this study were collected with the goal of identifying
and quantifying factors that relate to seasonal changes in cholesterol. For each
participant, triplicate measures of cholesterol were in collected in four quarters. In
each quarter, the data were collected not necessarily by the same examiner. We
reproduce part of the data in Table 1, that for illustrative effect, will represent our
target population.

Table 1 - Example of data of the Seasonal Variability of Blood Lipids

Name Data Examiner Cholesterol Quarter
1 13/05/1996 CS 208,6 1
1 15/05/1996 CS 206,9 1
1 17/05/1996 CS 208,4 1
1 12/08/1996 SU 171,3 2
1 16/08/1996 SU 174,3 2
1 20/08/1996 SU 185,7 2
...

...
...

...
...

13 26/08/1996 KL 182,0 3
13 28/08/1996 KL 194,5 3
13 29/08/1996 KL 198,5 3
13 22/11/1996 SU 107,1 4
13 24/11/1996 SU 102,9 4
13 27/11/1996 SU 109,1 4

We let ys denote the latent cholesterol level for the unit labeled s, s = 1, . . . , N ,
i.e., the expected value of the cholesterol level over 4 quarters and represent the
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corresponding endogenous measurement error variance by σ2
s . The population mean

cholesterol level is µ = N−1
∑N
s=1 ys and the population variance is γ2 = (N −

1)−1
∑N
s=1 (ys − µ)2.

We assume that the variability in the response introduced by the examiner is
the exogenous measurement error. For unit labeled s, measured in quarter q by the
j-th examiner, we represent the observed response by

Ysqj = ysq + W̃j , (1)

where ysq represents the latent level of cholesterol for unit s in quarter q and W̃j

represents exogenous measurement error, assumed to have mean zero and variance
σ̃2
j . The question is how can we estimate the latent value ys of unit s in the

population.
Linear mixed models have been extensively used for such purposes in an infinite

population setup as indicated in Goldberger (1962), Verbeke and Molenberghs
(2000), McCulloch and Searle (2001), Diggle, Heagerty, Liang and Zeger (2002),
Demidenko (2013), Fitzmaurice, Davidian, Verbeke and Molenberghs (2008), among
others. The standard linear mixed model for the response from the i-th unit selected
from a population can be represented as

Yi = µ+Bi + Ei, i = 1, . . . , n, (2)

where µ is the population mean response, Bi is a random effect corresponding
to the i-th selected unit, assumed to have mean zero and variance γ2 and Ei
is a measurement error, assumed to have mean zero and variance σ2 (or σ2

i , for
heteroskedastic models).

What does Ei represent? The answer depends on the manner with which
response error is associated with the realized units. If we assume that there is no
exogenous errors, then Ei represents the inherent variability of the i-th selected unit
response. Now, if assume that there is no variability in the selected unit’s response
and that all variability is due to the effect of measuring, then we can say that Ei is
associated to the exogenous variability.

What happens with Ei when you have the two types of variability
simultaneously? If Wi represents the endogenous measurement error and W̃i the
exogenous measurement error, then Ei = f(Wi, W̃i). The standard linear mixed
model (2) does not consider the distinction between the two sources of measurement
errors. It also does not retain identifiability of the units in the population. Our
objective is to clarify such issues in a finite population setup.

In Section 2, we describe the finite population mixed model with
endogenous/exogenous measurement errors and derive optimal estimators or
predictors using the expanded variable approach considered in Singer et al. (2012)
along with the methodology employed in standard linear mixed models and we
discuss the relationship between the predictors obtained under both approaches for
different covariance structures. In Section 3, we compare latent value predictors
obtained via finite population and standard linear mixed models. In Section 4,
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we analyse the cholesterol data described in the Introduction and indicate how
the function lme in the statistical software package R may be employed to fit
finite population linear mixed models in situations with either heteroskedastic
or homoskedastic exogenous and endogenous errors. We conclude with a brief
discussion in Section 5.

2 The finite population mixed model

We define a finite population as a collection of N identifiable units labeled
s = 1, . . . , N . Let y = (y1, . . . , yN )> denote a vector for which the s-th element is
the response latent value ys associated with unit s. The population mean response
is µ = N−1

∑N
s=1 ys, and the population response variance is γ2 = N−1

∑N
s=1(ys −

µ)2 = N−1
∑N
s=1 b

2
s where bs = ys−µ. Note that in this setup, bs is a constant and

not a random effect.
Following Singer et al. (2012), we define the random permutation model as an

ordered list of N random variables, where units are independently permuted. For
each permutation, we assign a new label, i = 1, . . . , N to the units according to
their position in the permuted list, letting Y = (Y1, . . . , YN )> denote the random
vector of latent permuted values. Simple random sampling without replacement is
introduced via a set of correlated indicator random variables, Uis, that take on a
value of one with probability 1/N if unit s is selected in position i in the sample
and zero otherwise. Then Y = Uy, where

U =


U11 U12 . . . U1N

U21 U22 . . . U2N

...
...

. . .
...

UN1 UN2 . . . UNN

 .

Letting the subscript ξ1 denote expectation with respect to the permutation
distribution, it follows that

• Eξ1(Uis) =
1

N
, i = 1, . . . , N, s = 1, . . . , N,

• Vξ1(Uis) =
1

N

(
1− 1

N

)
, i = 1, . . . , N, s = 1, . . . , N,

• COVξ1(Uis, Ui∗s∗) = − 1

N2
, i = i∗ and s 6= s∗,

• CVξ1(Uis, Ui∗s∗) = − 1

N2
, i 6= i∗ and s = s∗,

• COVξ1(Uis, Ui∗s∗) =
1

N2(N − 1)
, i 6= i∗ and s 6= s∗,

• Eξ1
[
vec(U>)

]
=

1

N
(1N ⊗ 1N ) ,

• Vξ1
[
vec(U>)

]
=

1

N − 1
PN ⊗ PN ,



(3)
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where, PN = IN − 1
N JN with JN = INI>N , IN denotes an identity matrix of

dimension N and 1N denotes an N ×1 vector with all elements equal to one. Then,
it follows that

Eξ1(Y ) = 1Nµ and Vξ1(Y ) = γ2[IN −
1

N
JN ]. (4)

Suppose that a simple random sample without replacement is to be selected
from the population. Without loss of generality, we let the sample (indexed by
i = 1, . . . , n) consist of the elements occupying the first n ≤ N positions in a
permutation . If we assume that only one observation is made on the i-th selected
unit and no measurement errors are considered, the model for the observable
response Yi in i-th position is

Yi =

N∑
s=1

Uisys = µ+Bi. (5)

When endogenous measurement error Ws associated to unit s is present, the model
for the observable response Ỹi may be specified as

Ỹi =

N∑
s=1

Uis(ys +Ws). (6)

If, in addition, an exogenous measurement error is considered for the j-th measurent
condition, the model for the observable response Ỹi is

Ỹi =

N∑
s=1

Uis(ys +Ws) + W̃i. (7)

Expression (7) may be written as

Ỹi =

N∑
s=1

Uis(µ+ bs +Ws) + W̃i = µ+

N∑
s=1

Uisbs +

N∑
s=1

UisWs + W̃i (8)

= µ+Bi +W ∗i + W̃i,

where W ∗i =
∑N
s=1 UisWs denotes the endogenous measurement error associated to

the i-th selected unit and Bi =
∑N
s=1 Uisbs denotes a random effect. Note that (8)

has a similar expression as the standard linear mixed model (2), with the exception
that the two sources of measurement error terms (endogenous and exogenous) are
explicit in the former. The standard linear mixed model cannot distinguish these
two sources of measurement error since the subscript i indexes simultaneously the
position and the selected unit in the sample.

Since
∑N
s=1 Uis = 1 for all i = 1, . . . , N , and in each row of U , there exists a

single value equal to 1, all the other being zero, it follows that W̃i =
∑N
s=1 UisW̃i.
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Then, when both endogenous and exogenous measurement errors are present, a
model for response on the N positions in the permuted population is

Ỹ =

[
N∑
s=1

U1s(ys +Ws + W̃1), . . . ,

N∑
s=1

UNs(ys +Ws + W̃N )

]>
.

Letting the subscript ξ2 represent expectation with respect to the endogenous
measurement error and subscript ξ3 represent expectation with respect to the
exogenous measurement error, we consider the following assumptions

• Eξ2(Ws) = 0, s = 1, . . . , N,
• Vξ2(Ws) = σ2

s , s = 1, . . . , N,
• COVξ2(Ws,Ws∗) = 0, s, s∗ = 1, . . . , N, s 6= s∗,

• Eξ3(W̃i) = 0, i = 1, . . . , N,

• Vξ3(W̃i) = σ2
i , i = 1, . . . , N,

• COVξ3(W̃i, W̃i∗) = 0, i, i∗ = 1, . . . , N, i 6= i∗,

• Eξ2ξ3|ξ1(Ws + W̃i) = 0, s = 1, . . . , N, i = 1, . . . , N,

• Vξ2ξ3|ξ1(Ws + W̃i) = σ2
s + σ2

i , s = 1, . . . , N, i = 1, . . . , N.


(9)

it follows that the expected value and variance of the random variable Ỹ are,
respectively

Eξ1ξ2ξ3(Ỹ ) = 1Nµ (10)

and

Vξ1ξ2ξ3(Ỹ ) = γ2PN + σ2IN +

N⊕
i=1

σ2
i (11)

where σ2 = N−1
∑N
s=1 σ

2
s and

⊕
denotes the direct sum operator.

We are interested in developing an optimal linear unbiased predictor (or
estimate) of target quantities of the form P = g>Y where g is a vector of constants.
For example,

i) if g = 1N , then g>Y =
∑N
i=1 Yi = τ , is the population total;

ii) if g = N−11N , then g>Y = N−1
∑N
i=1 Yi = µ, is the population mean;

iii) if g = ei, with ei denoting a vector with null elements except for the i-th
which is equal to 1, then g>Y = µ + Bi, the latent value of the unit in the
i-th position of the random permutation.

Note that i) and ii) represent fixed values but iii) refers to a random variable. We
are interested in predicting the random variable in iii). For such purpose, we follow
the ideas of Singer et al. (2012) and consider a setup to develop the BLUP of the
target quantity.

First, we represent a simple random sample without replacement by the first
n ≤ N random variables in Ỹ and let the remaining (N−n) random variables denote
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the responses of the non-sampled elements. Explicitly, we let Ỹ = [Ỹ
>
S , Ỹ

>
R]> and

will express the predictor as a linear combination of the sample random variables,
Ỹ S . To determine the coefficients of these random variables that lead to the optimal
predictor, we specify an unbiasedness constraint and then minimize the expected
mean squared error, subject to this constraint. This leads to the BLUP of the
target.

Taking (3) and (9) into account, we have

Eξ1ξ2ξ3

[
Ỹ S

Ỹ R

]
=

[
1n

1N−n

]
µ (12)

and

Vξ1ξ2ξ3

[
Ỹ S

Ỹ R

]
=

[
ṼS ṼSR
Ṽ>SR ṼR

]
= γ2

 In − 1
N Jn − 1

N Jn×(N−n)

− 1
N J (N−n)×n IN−n − 1

N JN−n


(13)

+ σ2

 In 0n×(N−n)

0(N−n)×n IN−n

+

 ⊕n
i=1 σ

2
i 0n×(N−n)

0(N−n)×n
⊕N

i=n+1 σ
2
i

 .
Now, we let g> = (g>S , g

>
R) so that the quantity to predict is P = g>SY S + g>RY R.

The BLUP of P must satisfy the following criteria considered in Royall (1976), i.e.,
it must:

• be a linear combination of the sample data: P̂ = c>Ỹ S

• be unbiased: Eξ1ξ2ξ3
[
c>Ỹ S − (g>SY S + g>RY R)

]
= 0

• have minimum MSE, Vξ1ξ2ξ3
[
c>Ỹ S − (g>SY S + g>RY R)

]
.

The unbiasedness constraint implies that c>E(Ỹ S) = g>SE(Y S) + g>RE(Y R) which
reduces to

c>1n = g>1N (14)

given that g>SE(Y S) + g>RE(Y R) = g>1Nµ and from (12), E(Ỹ S) = 1nµ.
Observing that

Vξ1ξ2ξ3

 Ỹ S

Y S

Y R

 =

 ṼS VS VSR
VS VS VSR
V>SR V>SR VR


and recalling (4) and (13), we obtain

Vξ1ξ2ξ2(P̂−P ) = c>ṼSc+g>SVSgS+g>RVRgR−2c>VSgS−2c>VSRgR−2g>RV>SRgS .
(15)
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Therefore, using Lagrangian multipliers, we seek the value of c that will minimize

f(c, λ) = Vξ1ξ2ξ2(P̂ − P ) + λ(c>1n − g>R1N−n).

Differentiating with respect to c and λ, setting these derivatives to zero and solving
for c we obtain the BLUP of P as

P̂ = g>S [1nµ̂+ VSṼ−1S (Ỹ S − 1nµ̂)] + g>R[1N−nµ̂+ V>SRṼ
−1
S (Ỹ S − 1nµ̂)] (16)

with

µ̂ = (1>n Ṽ
−1
S 1n)−11>n Ṽ

−1
S Ỹ S . (17)

For details, see Singer et al. (2012).
In particular, to obtain the BLUP of the latent value Pi = µ + Bi associated

to the i-th selected unit in the sample, first observe that

ṼS = γ2
[
Y n −

1

N
Jn

]
+ σ2In +

n⊕
i=1

σ2
i

VS = γ2
[
Y n −

1

N
Jn

]
VSR = −γ2 1

N
[1n1

>
N−n].

Given that

Ṽ −1S =

n⊕
i=1

(
γ2 + σ2 + σ2

i

)−1
+

γ2

N − γ2L
mm>,

where L =
∑n
i=1

(
γ2 + σ2 + σ2

i

)−1
and m is an n×1 vector with the i-th component

equal to
(
γ2 + σ2 + σ2

i

)−1
, the remaining ones equal to zero, from (17), it follows

that

µ̂ =

n∑
i=1

kiỸi/

n∑
i=1

ki,

where ki =
(
γ2 + σ2 + σ2

i

)−1
.

Then, (16) simplifies to

P̂i = µ̂+
γ2

γ2 + σ2 + σ2
i

(Ỹi − µ̂), i ≤ n (18)

where γ2/(γ2 + σ2 + σ2
i ) is a shrinkage constant.

When there are only endogenous measurement errors, the shrinkage constant
is γ2/(γ2 + σ2) and the BLUP is

P̂i = Ỹ +
γ2

γ2 + σ2 (Ỹi − Ỹ ), i ≤ n (19)
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with Ỹ = n−1
∑n
i=1 Ỹi.

When there are only exogenous measurement errors, the shrinkage constant is
γ2/(γ2 + σ2

i ) and the BLUP is

P̂i = µ̂+
γ2

γ2 + σ2
i

(Ỹi − µ̂), i ≤ n. (20)

When neither measurement errors are present, the BLUP reduces to Y i =
n−1

∑n
i=1 Yi. In practice, the variance components must be estimated, leading

to the so called empirical BLUP.

3 A comparison of finite population and standard mixed
models predictors

To clarify the effect of different sources of measurement errors in the prediction
of latent effects under mixed models, we reproduce a simple example from Singer
et al. (2012). For such purpose, we compare predictors of latent values of sampled
units in the presence of endogenous heteroskedastic measurement errors. We
consider a population of size N = 3 from which a sample of size n = 2 is selected.
A single measurement of a response variable with two possible values (equal to the
latent value ± the endogenous standard error) is obtained on each sampled unit.
The population parameters are presented in Table 2. The idea is to compare the

Table 2 - Parameters of a hypothetical finite population

Latent Variance Weight Shrinkage constant
Label value σ2

i ki [γ2/(γ2 + σ2
i )]

Alba y1 = 10 σ2
1 = 1 k1 = 0.491 w1 = 0.950

Juliana y1 = 3 σ2
2 = 100 k2 = 0.082 ws = 0.160

Laura y1 = 2 σ2
3 = 4 k3 = 0.427 ws = 0.826

µ = 5
γ2 = 19 σ2 = 35 w = 0.352

performance of the usual heteroskedastic linear mixed model BLUP, namely,

Q̂i = µ̂+
γ2

γ2 + σ2
i

(Yi − µ̂) (21)

with that of the corresponding heteroskedastic finite population mixed model BLUP,

P̂i = Y +
γ2

γ2 + σ2 (Yi − Y ).

In Table 3 we present all the possible results for samples of size n = 2 along with
the corresponding BLUP Q̂i and P̂i as well as their squared errors.
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Table 3 - Possible results obtained with a sample of size n = 2 from the population
described in Table 2 along with the corresponding BLUP (Q̂i and P̂i)

along with their respective squared errors, (Q̂i − ys)2 or (P̂i − ys)2

Observed values Squared
Latent values (Yi = ysi ± si) BLUP error

Sample ys1 ys2 Y1 Y2 Q̂1 Q̂2 P̂1 P̂2 Q̂ P̂
Alba/Juliana 10 3 11 13 11.0 11.6 11.6 12.4 37.2 45.1
Alba/Juliana 10 3 11 -7 10.9 5.9 5.2 -1.2 4.7 20.4
Alba/Juliana 10 3 9 13 9.0 10.1 10.3 11.7 25.8 37.9
Alba/Juliana 10 3 9 -7 8.9 4.5 3.8 -1.8 1.7 30.7
Alba/Laura 10 2 11 4 10.8 4.7 8.7 6.3 3.9 9.9
Alba/Laura 10 2 11 0 10.7 1.0 7.4 3.6 0.8 4.5
Alba/Laura 10 2 9 4 8.9 4.5 7.4 5.6 3.7 10.0
Alba/Laura 10 2 9 0 8.8 0.8 6.1 2.9 1.4 8.1

Juliana/Alba 3 10 13 11 11.6 11.0 12.4 11.6 37.2 45.1
Juliana/Alba 3 10 13 9 10.1 9.0 11.7 10.3 25.8 37.9
Juliana/Alba 3 10 -7 11 5.9 10.9 -1.2 5.2 4.7 20.4
Juliana/Alba 3 10 -7 9 4.5 8.9 4.5 8.9 1.8 1.8
Juliana/Laura 3 2 13 4 6.7 4.3 10.1 6.9 9.3 37.2
Juliana/Laura 3 2 13 0 3.8 0.4 8.8 4.2 1.7 19.2
Juliana/Laura 3 2 -7 4 0.7 3.7 -3.4 0.4 4.0 21.9
Juliana/Laura 3 2 -7 0 -2.1 -0.2 -4.7 -2.3 30.5 39.0
Laura/Alba 2 10 4 11 4.7 10.8 6.3 8.7 3.9 9.9
Laura/Alba 2 10 4 9 4.5 8.9 5.6 7.4 3.7 10.0
Laura/Alba 2 10 0 11 1.0 10.7 3.6 7.4 0.8 4.5
Laura/Alba 2 10 0 9 0.8 8.8 2.9 6.1 1.4 8.1

Laura/Juliana 2 3 4 13 4.3 6.7 6.9 10.1 9.3 37.2
Laura/Juliana 2 3 4 -7 3.7 0.7 0.4 -3.4 4.0 21.9
Laura/Juliana 2 3 0 13 0.4 3.8 4.2 8.8 1.7 19.2
Laura/Juliana 2 3 0 -7 -0.2 -2.1 -2.3 -4.7 15.3 39.0

Mean 5.0 5.0 5.8 5.8 5.0 5.0 9.1 23.7
Obs: ysi denotes the latent value in the i-th position in the sample
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Note that the finite population mixed model predictor P̂i is unbiased but the
standard linear mixed model Q̂i is not. We adopted the usual interpretation for Q̂i,
i.e., as a predictor of the response for the i-th selected subject assuming that the
associated variance corresponds to the subject-specific endogenous variance, which
changes with the subject selected in the i-th position. However, we call the attention
to the mistake in doing so, because according to the standard linear mixed model,
the shrinkage constant γ2/(γ2 + σ2

i ) is attached to the position i in the sample and
not to the subject selected in that position as in the example. This does not occur
with the shrinkage constant γ2/(γ2 + σ2) considered in the finite population mixed
model predictor. Nevertheless, the squared errors associated to the former are
consistently smaller than the corresponding squared errors associated to the latter.
The mean squared error of the finite population mixed model predictor is 23.7 while
the mean squared error of the misinterpreted linear mixed model predictor is 9.1.
This suggests that the unbiasedness condition considered in the derivation of P̂i
may not be appropriate.

Extensive simulations were conducted by Moreno (2009) to examine
the behaviour of both predictors under different setups involving underlying
distributions as well as sample sizes. In general, the standard linear mixed model
predictor performed better than the finite mixed model predictor.

4 Analysis of the cholesterol data in Table 1

In practical applications it is possible to fit finite population mixed models to
data with endogenous and exogenous measurement errors using routines developed
for standard mixed models and implemented in commonly used statistical software
packages, as SAS or R.

The standard linear mixed model representation for the j-th measure of the
i-th unit in the selected sample is

Yij = µ+Bi + Eij , i = 1, . . . , n, j = 1, . . . , ni (22)

with Bi
iid∼ N(0, γ2), and Eij

iid∼ N(0, σ2
i ) for heteroskedastic measurement errors

or Eij
iid∼ N(0, σ2) for homoskedastic measurement errors. The BLUP for Yi =

µ+Bi under this model has the form (19) in the homoskedastic case or (20) in the
heteroskedastic case.

As an example of how the computation might be carried out, consider the data
set described in the Introduction.

In Table 4 we display the the means of the 12 cholesterol measurements of
each subject and assume, for illustrative purposes, that they are the corresponding
“true” latent values. It follows that the “true” latent value variance is γ2 =
(1/13)

∑13
s=1(ys − Y )2 = 2939.9 where Y = (1/13)

∑13
s=1 ys. Additionally, we let

σ2
s = (1/3)

∑4
q=1(ysq − ys)2, s = 1, . . . , 13 where ysq denotes the mean cholesterol

level of subject s in quarter q as the “true” variance of the endogenous measurement
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Table 4 - Assumed latent value and endogenous measurement error variance along
with predictors obtained under different variance structures

lme predicted latent value
Label Latent Endogenous with error variance
s value (ys) variance (σ2

s) endogenous exogenous both
1 242.1 3545.1 241.0 241.5 238.7
2 263.2 1250.1 270.0 260.9 256.6
3 154.5 1932.9 157.9 158.3 164.8
4 232.6 3083.2 232.0 232.3 230.8
5 202.2 1299.4 203.2 203.3 205.1
6 280.4 1013.8 277.3 277.6 271.0
7 268.4 2216.9 265.9 267.1 261.0
8 198.4 1815.2 199.6 199.5 201.9
9 303.4 5222.3 299.1 300.9 290.4
10 237.7 548.9 236.8 237.2 235.0
11 141.8 1099.4 145.9 145.4 154.1
12 215.3 639.1 215.6 215.5 216.1
13 128.8 207.8 133.6 134.0 143.2

errors which are also presented in Table 4. Based on these values, the average “true”
endogenous variance is σ2 = (1/13)

∑13
s=1 σ

2
s = 1836.5.

In this setup, both the endogenous and exogenous measurement errors are
heteroskedastic. Note that when only heteroskedastic endogenous measurement
errors are present, the finite population mixed model predictor (19) has the same
form as the standard linear mixed model predictor with homoscedastic measurement
error variances.

Given that the columns labels in the data set are Patient, Trim, Rep,

Interv, Cholesterol, the predictors may then be obtained by the lme function
in R using the following commands:

require(nlme)

BLUP <- read.table("cholesterol.txt", header=T)

BLUP$Patient <- as.factor(BLUP$Patient)

BD1 <- groupedData(Cholesterol~1 | Patient, data = BLUP)

fit1<- lme(Cholesterol~1, data=BD1, random = ~1)

fit1$coefficients$fixed + fit1$coefficients$random$Patient

The lme predicted latent values are presented in the fourth column of Table 4.
The restricted maximum likelihood estimated population variance (γ2) is 2788.25.
It underestimates the “true” variance (2939.9) by 5%. The lme estimated mean
endogenous error variance (σ2) is 1836.47, and is practically equal to the “true”
value (1836.5).

When only exogenous measurement errors are present, the finite population
mixed model predictor (20) with heteroskedastic measurement error variance has
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the same form as the standard linear mixed model predictor with heteroskedastic
measurement error variances. The corresponding predictors for the cholesterol
example may be obtained via the following commands:

require(nlme)

BD1 <- groupedData(cholesterol~1 |Patient, data = dadoscol)

fit2 <- lme(Cholesterol~1, data=BD1, random = ~1,

weights=varIdent(form = ~1|Interv))

fit2$coefficients$fixed + fit2$coefficients$random$Patient

The results are displayed in the fifth column of Table 4. The estimated population
variance (γ2) is 2797.15.

When both heterogeneous endogenous and exogenous measurement errors are
present, the finite population mixed model predictors is equivalent to the standard
linear mixed model predictors generated from the model

Yijk = µ+Bi +Dik + Eijk, i = 1, . . . , n, k = 1, . . . , ni, j = 1, . . . , p (23)

where Bi
iid∼ N(0, γ2), Dik

iid∼ N(0, σ2) and Eijk
iid∼ N(0, σ2

j ). In (23), Dik

represents the endogenous measurement error and Eijk represents the exogenous
measurement error.

We assume that different interviewers match the different evaluation conditions
and consequently that the associated measurement errors may be considered as
exogenous measurement errors. The corresponding “true” exogenous measurement
error variances are presented in Table 5.

Table 5 - Exogenous measurement error variances

Position Interviewer Exogenous variance
1 CS 1012.8
2 KL 1623.3
3 SU 2001.1

The corresponding predictors for the cholesterol example may be obtained via
the following commands:

BD4 <- groupedData(Cholesterol~Interv|Patient/Trim, data = BLUP)

fit3 <- lme(Cholesterol~1, data=BD4, random = ~1,

weights=varIdent(form = ~1|Interv))

fit3$coefficients$fixed + fit3$coefficients$random$Patient

The lme predictors are displayed in the sixth column of Table 4.
The lme estimated population variance of the latent values is γ̂2 = 2455.1; the

lme estimate of the mean endogenous measurement error variance is σ̂ = 1312.8 and
the lme estimates of the exogenous measurement error variances are respectively,̂̃σ2

1 = 1017.8, ̂̃σ2

2 = 1592.8 and ̂̃σ2

3 = 2055.1.
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5 Discussion

By means of the example in Section 3, we showed that contrary to the usual
interpretation, the heterogeneous standard linear mixed model predictor (21) does
not take heterogeneous subject-specific (endogenous) variances into account. Since
the step that links a unit label to its position in a response vector is omitted
in the standard linear mixed model, this interpretation is erroneous. Finite
population mixed models prevent such erroneous switch of concepts. This is
aggravated by the fact that (21) corresponds to the BLUP obtained when exogenous
heteroskedastic measurement errors are considered. By explicitly considering both
types of measurement errors, we clarify this issue and extend the results of Singer
et al. (2012).

Given that the expressions for best linear unbiased predictors for finite
population mixed models may be matched to those obtained with standard linear
mixed models with either homoskedastic, heteroskedastic (or both) measurement
errors keeping the differences in interpretation in mind, we may use standard
software designed for the latter to obtain predictors for the former. The advantage
is that the covariance matrix is explicitly related to the exogenous or endogenous
measurement errors so that the choice of the model may take advantage of the
physical characteristics of the measurement process.

Finally, we note that neither model can account for the unit-specific
endogenous measurement error variances when the interest is to predict the latent
values of labelled selected units. One of the reasons for this may be related to the
unbiasedness condition, which relates to overall expected response and not to the
specific unit latent value. This issue has been raised by Robinson (1991) and by
Buonaccorsi (2006) in a slightly different context.

An attempt to bypass this problem has been addressed by Stanek III and
Singer (2004), who consider an expanded set of random variables following a random
permutation probability distribution that keeps track of both the units labels and
positions in the permutation. Unfortunately, under this model, the BLUP of a
unit’s parameter corresponds to the Horvitz-Thompson estimator when the unit is
included in the sample, or zero otherwise and is subject to criticism.
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MORENO, G.; SINGER, J. M.; STANEK III, E. J. Melhores preditores de valores
latentes não tendenciosos lineares para modelos lineares de população finita com
diferentes fontes de erro. Rev. Bras. Biom., Lavras, v.39, n.4, p.571-586, 2021.

RESUMO: Desenvolvemos preditores lineares não enviesados ótimos (BLUP) para

valores latentes de unidades amostrais rotuladas selecionadas de uma população finita

na presença de duas fontes de erros de medida: endógenas, exógenas ou ambas.

Parâmetros alvo usuais são a média populacional, o valor latente associado a uma

unidade amostral rotulada ou o valor latente da unidade amostral selecionada numa

determinada posição na amostra. Mostramos como os dois tipos de erros de medida

afetam a matriz de covariâncias intraunidades amostrais e indicamos como o BLUP

para populações finitas pode ser calculado por intermédio de software usualmente

utilizado para ajustar modelos mistos com erros de medida endógenos ou exógenos,

homocedásticos ou heterocedásticos.

PALAVRAS-CHAVE: Erro de medição; matriz de covariância.
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