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ABSTRACT: In this paper we introduce the distribution of three parameters, called Beta

Chi-square distribution (BCHI), is presented and contains the Chi-square distribution as

a sub-model. Its density function can be expressed as a linear combination of Chi-square

density function. Some structural properties of this distribution, how moments, and

hazard function are presented. Estimates of the model parameters are performed using

the Maximum Likelihood method. We obtain the observed information matrix and

discuss inference methods. In order to demonstrate the utility of the distribution, a real

data set is analyzed.

KEYWORDS: Moments; Hazard function; Maximum Likelihood method; Observed
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1 Introduction

Lancaster (1966) observed that Bienaymé (1838) obtained the Chi-square

distribution as the convergence in distribution of the random variable
∑k

i=1(Ni −
npi)

2/npi, where N1, · · · , Nk has a multinomial joint distribution with the
parameters n, p1, · · · , pk. It is also known that U1, , U2, · · · , Uk are independent
standard normal variables, so

∑k
i=1 U

2
i has a Chi-square distribution with k

degrees of freedom. Pearson’s Chi-square distribution also appeared in (1900)
as the approximate distribution for Chi-square statistics used for various tests on
contingency tables (of course the distribution exact of the statistic is discrete).
The use of the Chi-square distribution to approximate the distribution in a
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quadratic form (particularly the positive defined one) in multinormal variables is
well established and generalized. Order moments and statistics of the Chi-square
distribution appear in many areas of probability and statistics. Some examples
are: approximations of convolutions of random variables, multivariate statistical
tests, Pearson test statistics χ2, quality of statistical adjustments, classification and
selection procedures, tests of homogeneity of variances and transformations. For
more details Tiku (1965), Jensen (1973), Hall (1983), Holtzman and Good (1986),
Ko e Yum (1991), Wang (1994), and Mathai Pederzoli (1996), Fujikoshi (1997),
Fujisawa (1997), Fujikoshi (2000) and Garcia-Perez and Nunez-Anton (2004).

The classes of beta-generalized distributions have received a considerable
attention in recent years, particularly after the recent work by Eugene et al. (2002)
and Jones (2004). Eugene et al. (2002) created the normal beta distribution
(BN), introducing the cumulative distribution function of the normal G(x) in (3),
and derived some of its first moments. More general expressions of moment for
BN were derived by Gupta and Nadarajah (2004). Nadarajah and Kotz (2004)
presented the beta Gumbel distribution (BG) , obtained closed-form expressions
for the moments,asymptotic distribution of extreme order statistics, and discussed
the estimation procedure by maximum likelihood. Nadarajah and Gupta (2004)
presented the beta Fréchet (BF) distribution forG(x) being the Fréchet distribution.

Later, Nadarajah and Kotz (2005) worked with the exponential beta
distribution (BE) and obtained the moment generating function, the first four
cumulants, the asymptotic distribution of extreme order statistics and discussed
the estimation procedure by maximum likelihood. The log F (or beta logistic)
distribution was presented by Brown et al. (2002), existing for more than 20 years.
Kong, et al. (2007) proposed a generalized distribution class called beta-gamma
and examined some of its properties. Cordeiro and Nadarajah (2011) obtained
closed forms of the expressions of moments of a class of generalized distributions and
Cordeiro, et al. (2012) found the generalized beta gamma (BGG). Recently Elbatal,
et al. (2019) introduced a new five parameter continuous probability distribution
called the modified Gompertz beta distribution.

Chi-square distribution is a special case of the Gamma distribution then the
Beta Chi-square distribution (BCHI), proposed here, is a special case of the Beta-
gamma distribution. In this article, we present the BCHI distribution, analyze some
of its properties, the shape of the pdf, moments, hazard function, inferential studies
and an application in a real database are provided to illustrate the usefulness of the
proposed model.

2 The Model Definition

If G(x) denotes the cumulative distribution function (cdf) of a random variable
X, then the generalized class of distributions, as defined by Eugene et al. (2002),
can be define as

F (x) = IG(x)(a, b), (1)
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for a > 0 e b > 0, where

IG(x)(a, b) =
BG(x)(a, b)

B(a, b)
(2)

denotes the incomplete beta ration, and the incomplete beta function is given by

BG(x)(a, b) =

∫ G(x)

0

wa−1(1− w)b−1dw, (3)

and
B(a, b) = Γ(a)Γ(b).

The probability density function corresponding to (1) is given by

f(x) =
g(x)

B(a, b)
(G(x))a−1(1−G(x))b−1, (4)

where g(x) is the pdf corresponding to G(x).

In this article, we consider the case when G(x) is the cumulative distribution
function of the Chi-square distribution with parameter α. Thus, the random
variable X follows the beta Chi-square distribution BCHI(α, a, b), with
probability density function (pdf)

BCHI(α, a, b) =
xα/2−1e−x/2

2α/2Γ(α/2)B(a, b)

(
γ (α/2, x/2)

Γ(α/2)

)a−1 (
1− γ (α/2, x/2)

Γ(α/2)

)b−1

,

(5)

where γ(α/2, x/2) =
∫ x/2

0
tα/2−1exp(−t)dt is the incomplete Gamma function.

By using Equation (1), the cdf of the BCHI(α, a, b) is given by

F (x) =
1

B(a, b)

∫ γ(α
2

, x
2 )

Γ(α
2

)

0

wa−1(1− w)b−1dw. (6)

The BCHI distribution for a = b = 1 reduces to the Chi-square distribution with
parameter α. The Fig. 1 illustrates the distribution function (6) and the density
function (5), respectively, of BCHI, for different values of α.

3 General formula for moments

In statistical analysis, it is essential to study the moments, some of the most
important characteristics of a distribution can be studied using moments, such as
trend, dispersion, asymmetry and kurtosis. According to Cordeiro and Nadarajah
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Figure 1 - Illustration of some possible forms of the distribution function (7) and
the density function (6), for constant values of a = 0.7, b = 1.35 and
different values of (α).

(2011), we must assume that X has pdf of any primitive G distribution, in our
case the Chi-square distribution, and Y follows the Beta Chi-square distribution
function. Here, we use power series to rewrite Chi-square beta distribution, as
follows

{1−G(x)}b−1
=

∞∑
i=0

(−1)i
(
b− 1

i

)
G(x)i.

Repeating this process, we can rewrite the equation (4) as follows

f(x) = g(x)

∞∑
i,j=0

j∑
r=0

wi,j,rG(x)r, (7)

on what

wi,j,r =
(−1)1+j+r

B(a, b))

(
b− 1

i

)(
a+ i− 1

j

)(
j

r

)
.

More details can be found in Cordeiro and Nadarajah (2011). In order to find
ordinary moments, we use the probability-weighted moments (PWM) method,
proposed by Greenword, et al. (1979) and later applied to the Betas distributions
by Cordeiro and Nadarajah (2011).

According to Greenword, et al. (1979), a distribution function F = F (x) =
P (X ≤ x) can be characterized by PWM, when it is defined as

Ms,r = E[XsF r].
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Consider that X has pdf of any G distribution function and Y follows the pdf of
the beta G distribution. So, we have to a ∈ Z

µ′
s =

∞∑
r=0

wrMs,r+a−1, (8)

is for a real non integer,

µ′
s =

∞∑
r=0

wrMs,r. (9)

3.1 Moments of the beta Chi-square

The sth moment of the Y can be expressed in terms of the (s, r)th PWM of

X; i.e., Ms,r. We should still consider
∑∞

r=0 wr = 1 and
∑∞

l,j=0

∑j
r=0 wl,j,r = 1.

With the formulas above obtained by Cordeiro and Nadarajah (2011), we can find
the moments of Beta Chi-square.

Supposing now that X has a Chi-square distribution with parameter α
2 > 0. We

will get Ms,r using series expansion for an incomplete gamma function, namely

γ(α, x) = xα
∞∑

m=0

(−x)m

(α+m)m!
(10)

making the variable change α
2 = λ and applying an accumulated Chi-square

distribution, it follows

G(x) =
(x
2

)λ ∞∑
m=0

(−x
2

)m
(λ+m)m!

. (11)

And then

Ms,r =

∫ ∞

0

xs+λ−1exp(−x
2 )

2λΓ(λ)

{(
x
2

)λ
Γ(λ)

∞∑
m=0

(−x
2

)m
(λ+m)m!

}r

dx, (12)

replacing x
2 = u we have

Ms,r =

∫ ∞

0

(2u)s+λ−1exp(−u)

2λΓ(λ)

{
(u)

λ

Γ(λ)

∞∑
m=0

{
(−u)

m

(λ+m)m!

}}r

2du

=
2s

Γ(λ)r+1

∫ ∞

0

(u)s+λ−1exp(−u)

{
(u)

λ
∞∑

m=0

{
(−u)

m

(λ+m)m!

}}r

du. (13)

The integral in (13) can be obtained from the equations (24) e (25) Nadarajah
(2008), how
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Ms,r =
2s

Γ(λ)r+1

{ ∞∑
m1=0

· · ·
∞∑

mr=0

(−1)m1+···+mr

(λ+m1) · · · (λ+mr)m1! · · ·mr!

}
∗∫ ∞

0

us+λ(r+1)+m1+···+m−1
r exp(−u)du.

=

∞∑
m1=0

· · ·
∞∑

mr=0

(−1)m1+···+mrΓ(s+ λ(r + 1) +m1 + · · ·+mr)

(λ+m1). · · · .(λ+mr)m1! · · ·mr!

Using the Lauricella function of type A (EXTON, 1978), it follows that

Ms,r =
2s

Γ(λ)r+1
Γ(s+ λ(r + 1))F

(r)
A (s+ λ(r + 1);λ, · · · , λ;λ+ 1, · · ·λ+ 1;−1, · · · ,−1) . (14)

Thus, the moments of the beta Chi-square distribution can be written as
infinite weighted sums of the Lauricella function of type A, defined for integer and
noninteger real number, replacing (14) in (8) and (9), respectively.

4 Hazard functions

Let X be a continuous random variable with distribution function F , and
probability density function (pdf) f ,then the hazard function is given by h(x) =
f(x)/(1− F (x)). The hazard function of the BCHI distribution is

h(x) =
2−α/2e−x/2x−1+α/2

(
γ(α/2,x/2)

Γ(α/2)

)a−1 (
1− γ(α/2,x/2)

Γ(α/2)

)b−1

(
B(a, b)−B(γ(α/2,x/2)Γ(α/2) , a, b)

)
Γ(α/2)

(15)

for x ≥ 0, α > 0, a > 0 and b > 0.
The plots at Fig. 2 show various shapes including monotonically decreasing,

monotonically increasing with four combinations of values of the parameters. This
flexibility makes the BCHI hazard rate function useful and suitable for behaviors
which are more likely to be encountered or observed in the reality.

5 Inference

Let x = (x1, · · · , xn) be a random sample of the BCHI distribution with
unknown parameter vector θ = (α, a, b). The log likelihood ℓ = ℓ(θ;x) for θ is

ℓ =
(α
2
− 1

)
log(x)− x

2
− α

2
log(2) + (a− 1) log((γ(

α

2
,
x

2
))

+ (b− 1) log
(
Γ
(α
2

)
− γ

(α
2
,
x

2

))
− (a+ b− 1) log

(
Γ(

α

2
)
)

− log(β(a, b)) (16)
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Figure 2 - Plot Hazard Rate Function for selected parameters.

The maximum likelihood estimate (MLE) θ̂ of θ is calculated numerically from the
nonlinear equations Uθ = 0 using the EM algorithm. The components of the score
vector Uθ = (Uα, Ua, Ub)

T , consider α
2 = λ, are given by

Uλ =

n∑
i=1

log(xi)− n log(2) + (a− 1)

n∑
i=1

1

γ(λ, xi

2 )
{ γ(λ,

xi

2
) log(

xi

2
)

+ MeijerG[{{} , {1, 1}} , {{0, 0, α} , {}} , xi

2
]

+ (b− 1)

n∑
i=1

1

γ(λ, xi

2 )
MeijerG[ ] } − n(a+ b− 1)PolyGamma[0, λ],

the MeijerG and PolyGamma functions were defined by Fields (1972) and Wolfram
(1988), respectively.

Ua = −n log[Γ[λ]] +

n∑
i=1

log[γ[λ,
xi

2
]]− nPolyGamma[0, a] + nPolyGamma[0, a+ b].

Ub = −n log[Γ[λ]] +

n∑
i=1

log[Γ[λ]− γ[λ,
xi

2
]]− nPolyGamma[0, b] + nPolyGamma[0, a+ b].
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The EML’s θ̂ = (λ̂, â, b̂)⊤ in θ = (λ, a, b)⊤ are simultaneously the solutions of
the equations Uλ = Ua = Ub = 0 and can be obtained numerically using the
Newton-Raphson method. The observed information matrix can be obtained by

Jn(θ) =
−∂2ℓ(θ)
∂(θ)∂θ⊤ = −Uij , for i, j = λ, a and b,

Uλλ =

n∑
i=1

{ −1

γ(λ, xi

2 )
2
(a− 1)

(
γ(λ,

xi

2

2
) log(

xi

2
) +MeijerG[{{} , {1, 1} , {0, 0, λ} , {}} , xi

2
]

)2

+
1

γ(λ, xi

2 )
(a− 1)

(
log(

xi

2
)MeijerG[{{} , {1, 1} , {0, 0, λ} , {}} , xi

2
]

+ log
(xi

2

)(
γ(λ,

xi

2
) log

(xi

2

)
+MeijerG[{{} , {1, 1} , {0, 0, λ} , {}} , xi

2
]
)

+ 2MeijerG[{{} , {1, 1} , {0, 0, λ} , {}} , xi

2
] ) }

+

n∑
i=1

{ 1− b

Γ(λ)− γ(λ, xi

2 )

· (−γ(λ,
xi

2
) log

(xi

2

)
−MeijerG[{{} , {1, 1} , {0, 0, λ} , {}} , xi

2
] + Γ (λ)PolyGamma(0, λ) )

2

+
−1 + b

Γ(λ+ γ(λ, xi

2 ))
(− log(

xi

2
)MeijerG[{{} , {1, 1} , {0, 0, λ} , {}} , xi

2
] ) }

− 2MeijerG[{{} , {1, 1, 1} , {0, 0, 0, λ} , {}} , xi

2
] + Γ(λ)PolyGamma(0, λ)2

+ PolyGamma(1, λ) ) }+ n(a+ b− 1)PolyGamma[1, λ].

Uaa = −nPolyGamma[1, a] + nPolyGamma[1, a+ b].

Ubb = −nPolyGamma[1, b] + nPolyGamma[1, a+ b].

Uλa =

n∑
i=1

γ
(
λ, xi

2

)
log

(
xi

2

)
+MeijerG[{{} , {1, 1} , {0, 0, λ} , {}} , xi

2 ]

γ
(
λ, xi

2

) − nPolyGamma[0, λ].

Uλb =
n∑

i=1

−γ
(
λ, xi

2

)
log

(
xi

2

)
−MeijerG[{{} , {1, 1} , {0, 0, λ} , {}} , xi

2 ]

Γ(λ)− γ
(
λ, xi

2

) − nPolyGamma[0, λ].

Uab = 0.

We can calculate the likelihood ratio (LR) test to test some sub-models of the
BCHI distribution. For example, we can use LR to check whatever the fit using
the BCHI distribution is statistically “best” than an fit using the χ2 distribution,
for a given data set. Consider the partition θ =

(
θ⊤1 , θ

⊤
2

)
the vector of parameters

of the BCHI distribution, where θ1is a subset of parameters of interest and θ2
is a subset of perturbation parameter vectors. The LR statistic for testing null

hypotheses H0 : θ1 = θ
(0)
1 versus the alternative hypothesis H1 : θ1 ̸= θ

(0)
1 it is given

by w = 2
{
ℓ(θ̂)− ℓ(θ̃)

}
, being θ̂ and θ̃ are the MLE’s under the null hypothesis
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and the alternative, respectively, and θ
(0)
1 is a specified parameter vector. The w

statistic is asymptotically distributed (n → ∞) for χ2
k, where k is the size of the

subset of interest θ1. Then, we can compare the BCHI model against the model
χ2 to test H0 : a = b = 1 versus H1 : a ̸= b ̸= 1 and the LR statistic becomes

w = 2
{
ℓ
(
λ̂, â, b̂

)
− ℓ

(
λ̃, 1, 1

)}
, where λ̂, â and b̂ they are the MLE’s in H1 e λ̃, ã

e b̃ are MLE’s under H0.

Non-nested distributions can be compared based on the Akaike information
criterion given by the formula AIC = −2ℓ(θ̂) + 2p and the Bayesian information

criterion defined by BIC = 2ℓ(θ̂) + p log(n), being p the number of parameters
in the model. The lowest value distribution of any of these criteria (among all the
distributions considered) is generally considered the best choice to describe the data
set.

6 Application

In this section, the Beta Chi-square distribution was adjusted using a real
database and then compared with the Chi-square distribution in order to compare
them and verify their potentiality. The data set represents the survival times, in
weeks, of 33 patients suffering from acute Myelogeneous Leukemia. These data have
been analyzed by Feigl and Zelen (1965). The data set was recently studied by Woll
et al. (2014) and Altun et al. (2021). Obtaining the maximum likelihood estimates
(MLEs) for the distribution parameters, the maxLik function in maxLik-package of
the statistical software R was used, and the iteration method was Newton Raphson.
The estimated values of the parameters, the Hannan-Quinn information criterion
(HQC), Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC)
are presented in the Table 1.

The Figure 3 shows the fits of the BCHI and Chi-square. According to the
illustration, the good fit of the BCHI distribution is observed.

Table 1 lists the MLEs of the models parameters BCHI and Chi-square, and
the statistics AIC and BIC. These results show that the BCHI distribution has the
lowest statistics and so it could be chosen as the best model.

Table 1 - The statistics HQC, AIC and BIC and estimates of the model parameters
for the acute myelogeneous data
MODEL HQC AIC BIC α a b
BCHI 870.969 869.459 873.948 17 0.7 1.341

Chi-square 969.036 968.533 970.029 17.93
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Figure 3 - The histogram of the acute myelogeneous data and the estimated fitted
distributions.

7 Conclusions

In this work, we define a new model called Beta Chi-square distribution. It
is observed the new distribution of three parameters is quite similar in nature to
the distribution Chi-square. Although the new distribution is more flexible due the
fact it has more parameters than the primitive distribution.

Finally, we adjusted the BCHI model to a set of real data and observed that
the new distribution performed better than the compared model, according to the
statistics presented.

SACRAMENTO, K.P. N.; SACRAMENTO, V. P. Distribuição Beta Chi-quadrado
propriedades e aplicações. Braz. J. Biom., Lavras, v.40, n.1, p.108-119, 2022.

RESUMO: Neste artigo, apresentamos a distribuição de três parâmetros, denominada

distribuição Beta Qui-quadrado (BCHI), que contém a distribuição Qui-quadrado como

um submodelo. Sua função de densidade pode ser expressa como uma combinação

linear da função de densidade qui-quadrado. Algumas propriedades estruturais desta

distribuição, como os momentos e a função de risco são apresentados. As estimativas

dos parâmetros do modelo são realizadas usando o método de Máxima Verossimilhança.

Obtemos a matriz de informação observada e discutimos métodos de inferência. Para

demonstrar a utilidade da distribuição, um conjunto de dados real é analisado.

PALAVRAS-CHAVE: Momentos; Função de risco; Método de máxima verossimilhança;

Matriz de informação observada.
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de L’lnstitut de France, Paris, Series Etrangers, V. 5, 513-558, 1838.

BROWN, B.W.; FLOYD, M. S; LEVY, L.B. The log F: a distribution for all seasons.
Computational Statistics, V. 17, 47-58, 2002.

CORDEIRO, G. M.; NADARAJAH, S. Closed-form expressions for moments of
a class of beta generalized distributions, Brazilian Journal of Probability and
Statistics, Vol. 25, No. 1, 14-33.

CORDEIRO, G. M. et al. The beta generalized gamma distribution. Statistics, v.47,
n.4, 888-900, 2012.

ELBATAL, I. et al. The Modified Beta Gompertz Distribution: Theory and
Applications. Mathematics, v. 7, n. 1, p. 3, 2019.

EUGENE, N.; LEE, C.; FAMOYE, F. Beta-normal distribution and its applications.
Communications in Statistics-Theory and methods, v. 31, n. 4, p. 497-512, 2002.

FEIGL, P.; ZELEN, M. Estimation of exponential survival probabilities with
concomitant information. Biometrics, p. 826-838, 1965.

FIELDS, J. L. The asymptotic expansion of the Meijer G-function. Mathematics of
Computation, v. 26, n. 119, p. 757-765, 1972.

FUJIKOSHI, Y. A method for improving the large-sample chi-squared approxima-
tions to some multivariate test statistics, Amer. J. Math. Management Sci., v. 17,
n. 1-2, p. 15-29, 1997.

FUJIKOSHI, Y. Transformations with improved chi-squared approximations, J.
Multivariate Anal. v. 72, n. 2, p. 249-263, 2000.

FUJISAWA, H. Improvement on chi-squared approximation by monotone
transformation, J. Multivariate Anal. v. 60, n. 1, p. 84-89, 1997.
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