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ABSTRACT: In the analysis of multivariate spatial random fields, it is essential to
define a covariance structure that adequately models the relationship between the
variables under study. We propose a covariance structure with exponential correlation
function for bivariate random fields, the SEC model. We compare the SEC model fits
with the bivariate separable exponential model and the bivariate exponential model with
constraints, which are particular cases of the full bivariate Matérn model, presented in
the literature. A simulation study assess characteristics of the proposed model. The
model is fitted to a weather data set from Brazil, bearing in mind the importance of
analyzing climate data to predict adverse environmental conditions. Predictive measures
are used to compare the models under study. The satisfactory results compared to the
models considered and the simpler structure makes the SEC model an alternative for
the analysis of bivariate spatial fields.

KEYWORDS: Random fields; Covariance functions; Bivariate exponential model;

Geostatistical data.

1 Introduction

Spatial data analysis is of interest in a diversity of contexts including
monitoring of environmental indicators. The definition of a covariance structure
that jointly models multiple responses over a region of space is challenging,
especially when the number of response variables increases, which can inflate the
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number of parameters on the model structure. In such cases, finding a valid
covariance structure which can be reasonably estimated from data is a non trivial
task.

Different covariance structures for random fields have been proposed and
evaluated by several authors, among them, the linear model of corregionalization
(GOULARD and VOLTZ, 1992), which is built from univariate models and the
Matérn covariance model (APANASOVICH and GENTON, 2010; GNEITING et
al., 2010; GUTTORP and GNEITING, 2005). Genton and Kleiber (2015) present
a review of the main constructions of cross-covariance functions addressed in the
literature. Other recent works on covariance functions for multivariate spatial data
can be found at Alegŕıa et al. (2018), Bevilacqua et al. (2020), Kleiber (2017),
Ip and Li (2017), Prause et al. (2018), Schlather et al. (2015) and Vallejos et al.
(2020), to name a few.

Gneiting et al. (2010), provides necessary and sufficient conditions for the
covariance structure of a bivariate random field with Matérn correlation function to
be positive definite. In addition, sufficient conditions for the covariance structure of
a multivariate Matérn random field are also defined. Such models have restrictions
in the parametric space, which makes estimation more difficult, especially when the
number of response variables increases. More robust covariance models for random
fields are still a challenge.

The purpose here is to investigate a covariance structure to model bivariate
isotropic Gaussian random fields. The presented structure, called SEC model, is
built upon the Kronecker products reformulation of covariance matrices as simple
matrix products (MARTINEZ-BENEITO, 2013), for continuous spatial processes.
Attractive characteristics of this approach is that the covariance matrices resulting
are always valid and the conditions imposed on the parameter values are less
restrictive.

Section 2 presents some basic concepts on cross covariance functions. Section 3
summarizes the Matérn model discussed in Gneiting et al. (2010). Section 4
presents the proposed covariance structure for bivariate random fields: the simpler
exponential covariance (SEC) model, along with its main characteristics. Section 5
presents a simulation exercise to illustrate some features of the proposed model.
Section 6 presents the analysis of a real data set to illustrate the proposed model, as
well as the calculation of accuracy measures to compare the proposed model with the
bivariate separable exponential and the constrained bivariate exponential models.
The main conclusions are summarized in Section 7. All the analysis reported are
performed using the computational statistical software R (R CORE TEAM, 2020).

2 Cross covariance function

Assume n sample locations sk, k = 1, ..., n, such that sk ∈ Rd, with d being the
dimension of the domain in which sk locations are contained, typically d = 2. At
each location sk we have measures of some amount x, whose values are represented
by x(sk). The value x(sk) represents one of the infinite values that could be observed
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for the amount x at the location sk. Therefore, it is usual to represent the infinite
possible values of the quantity x at each location sk, by a random variable X(sk).
In addition, these random variables can be seen as a subset of an infinite family of
random variables (WACKERNAGEL, 2013) which is called random function (RF)
and it is represented by X(s), for any s ∈ Rd.

Chiles and Delfiner (2012) present a RF as a stochastic process when the
quantity of interest varies in a one-dimensional space, which can be interpreted as
time, for example, and as a random field when the quantity of interest varies in a
space of a dimension greater than one.

A RF is called Gaussian, if for any finite collection of locations s1, s2, ..., sk,
with sk ∈ Rd, the probability distribution of X(s1), X(s2), ..., X(sk) is a Gaussian
multivariate distribution. Considering that the first two moments are sufficient to
characterize the Gaussian distribution, a Gaussian random field is also completely
characterized by its mean and covariance function (CHILÈS and DELFINER, 2012;
DIGGLE and RIBEIRO, 2007). It is also called isotropic, if its covariance function
does not depend on the h vector orientation, but only on its length |h|.

The notation X(s) = (X1(s), X2(s))> will be used to denote a bivariate
Gaussian random field at s ∈ Rd, with mean vector µ(s) = (µ1(s), µ2(s))>, where
µi(s) = E(Xi(s)), for i = 1, 2 and covariance matrix:

C(h) =

(
C11(h) C12(h)
C21(h) C22(h)

)
, (1)

where Cij(h) in (1) is the cross covariance function between the variables Xi(s)
and Xj(s + h), which, for a stationary process, is given by:

Cij(h) = Cov[Xi(s), Xj(s + h)], for i, j = 1, 2, (2)

that is, the covariance function of a stationary process depends only on the distance
h between the locations.

When i = j, the functions in (2) become the univariate covariance functions
Cii(h), and if, in addition, h = 0, then Cii(0) = V ar(Xi(s)) = σ2

i .
From the covariance function, it is possible to obtain the correlation function,

ρij(h) =
Cij(h)

σiσj
, for i, j = 1, 2. (3)

If the variables are zero-centered, the covariance functions in (1), can be defined by:

Cij(h) = E[Xi(s)Xj(s + h)].

The covariance structure (1) must meet the positive definite condition, that is:

n∑
i=1

n∑
j=1

a>i C(si − sj)aj ≥ 0,

for all n ∈ N, s1, s2, ..., sn ∈ R2 and a1,a2, ...,an ∈ R2.
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Other properties on cross covariance functions can be found in Diggle and
Ribeiro (2007), Chiles and Delfiner (2012) and Wackernagel (2013). Section 3
presents an important class of covariance functions discussed in the literature, the
Matérn covariance function.

3 Matérn Covariance Function

The Matérn covariance model proposed by Gneiting et al. (2010), uses the
Matérn correlation function to build the covariance matrix defined in (1). Thus, for
a second-order bivariate Gaussian random process with zero mean vector, the ij-th
entry of C(h), is

Cij(h) = ρijσiσjM(h|νij , 1/φij), i, j = 1, 2. (4)

where M(h|ν, 1/φ) =
21−ν

Γ(ν)
(|h|/φ)

ν
Kν (|h|/φ), is the Matérn correlation function

at distance |h|, Kν is the modified Bessel function of order ν, σ > 0 is the standard
deviation parameter, ν > 0 is the smoothing parameter and φ > 0 is the correlation
length. For i = j, ρii = 1, the expression reduces to the univariate covariance
function, whereas for i 6= j, to the cross covariance function.

According to Gneiting et al. (2010), a challenge is to determine the conditions
for the parameters ρij , νij and φij , so that the C matrix is positive definite.
Necessary and sufficient conditions are established for the parameters of a bivariate
random field, and also proved that the structure (4) is valid if, and only if,

ρ12 = β12

(
Γ(ν1 + d/2)Γ(ν2 + d/2)Γ(ν12)2

Γ(ν1)Γ(ν2)Γ(ν12 + d/2)2

)1/2

(5)

× φ2ν1212

φν11 φ
ν2
2

inf
t≥0

(1 + t2/φ212)ν12+d/2

(1 + t2/φ21)ν1/2+d/4(1 + t2/φ22)ν2/2+d/4
,

for some β12 ∈ [−1, 1]. This model is called full bivariate Matérn model.
As a complex model, the full bivariate Matérn model can, in some cases,

be difficult to estimate and interpret due to the restrictions in the parametric
space. In this sense, more parsimonious proposals of this model were presented.
For example, a particular case of this model is a construction called separable.
A covariance function is called separable if it assumes that its components share
the same correlation structure (BEVILACQUA et al., 2015; BEVILACQUA et al.,
2016). Thus, for a bivariate Gaussian random field with the Mátern correlation
function, the covariance function will take the form:

Cij(h) = ρijσiσjM(h|ν, 1/φ), i, j = 1, 2 and ρii = 1. (6)

The model has some limitations because it cannot capture the different scales
and smoothness of the variables under study. The model in 6 is called bivariate
separable Matérn model (BEVILACQUA et al., 2018; VALLEJOS et al., 2020).
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Another particular case of the full bivariate Matérn model is when φ12 =
0.5(φ1 + φ2) and ν12 = 0.5(ν1 + ν2). Such specification is called bivariate Matérn
model with constraints (BEVILACQUA et al., 2018; VALLEJOS et al., 2020).
Both models (bivariate separable Matérn model and bivariate Matérn model with
constraints) are implemented in the GeoModels package (BEVILACQUA et al.,
2018).

We consider here the bivariate separable Matérn model (ExpGneiting sep)
and the bivariate Matérn model with constraints (ExpGneiting contr), taking the
particular case where the exponential correlation function is used.

A covariance structure for bivariate stationary Gaussian random fields with
exponential correlation function is proposed in Section 4.

4 The SEC model

In this section, we present in details the proposed covariance structure for
bivariate isotropic stationary Gaussian random fields, where each component is an
exponential process. We called it as simpler exponential covariance (SEC) model
and it is based upon Martinez-Beneito (2013). Unlike Martinez-Beneito (2013)
proposal, which presents a covariance structure for multivariate mapping diseases
problems, our work differs mainly in the fact that our covariance structure is built
for continuous space data and it is applied for bivariate geostatistical problems.
Thus, the covariance structure takes the form:

C(h) = Bdiag

(
C̃11, C̃22

)>
(Σb ⊗ In)Bdiag

(
C̃11, C̃22

)
(7)

where, C̃ii denotes the Cholesky decomposition of the matrix Cii, Bdiag represents

the matrix in diagonal blocks of the matrices C̃11 and C̃22, In is the identity matrix
of dimension n and Σb denotes the correlation matrix, which for simplicity, we will
consider:

Σb =

(
1 ρ12
ρ12 1

)
, with − 1 < ρ12 < 1. (8)

For univariate covariance functions, Cii, exponential covariance functions will
be considered, that is,

Cii(h) = σ2
i exp

(
− h

φi

)
, for i = 1, 2, (9)

where σ2
i > 0 is the variance parameter and φi > 0 is the correlation length.

The SEC model is the structure specified by (7), (8) and (9). This structure
is always positive definite for any positive definite matrices choices for C11, C22

and Σb, and considering the usual restrictions for the variance and correlation
parameters (MARTINEZ-BENEITO, 2013). For the bivariate case, the matrix
C(h) in (7) is positive definite if, and only if, |ρ12| < 1.
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Figure 1 - Simulation of a SEC model with (a) σ1 = 0.5, σ2 = 1.0, φ1 = 0.1,
φ2 = 0.3 and ρ12 = 0.8 and (b) σ1 = 0.5, σ2 = 1.0, φ1 = 0.1, φ2 = 0.3
and ρ12 = −0.8.
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To illustrate the behavior of the proposed model, we simulate a bivariate
stationary Gaussian process with SEC model on a regular grid. We set the
parameter values as σ1 = 0.5, σ2 = 1.0, φ1 = 0.1, φ2 = 0.3 and ρ12 = −0.8, 0.8,
aiming to illustrate situations with positive and negative correlations between the
variables. Figure 1 shows corresponding simulations.

5 Simulation

We simulated 1000 samples with 225 observations on a regular grid
from a zero mean bivariate isotropic stationary Gaussian random field,
Xk = (X>1,k(s),X>2,k(s))>, with k = 1, 2, ..., 225, where Xi,k(s) =

(Xi(s1), Xi(s2), ..., Xi(sk))>, i = 1, 2.
The likelihood function is given by:

l225(Ψ) = −1

2

[
450 log(2π) + log |C(Ψ)|+ X>s [C(Ψ)]−1Xs

]
(10)

We consider for the function in (10) the covariance structure of the SEC model,
defined by equations (7), (8) and (9), where Ψ = (φ1, φ2, σ1, σ2, ρ12)> is the
parameters vector to be estimated. We set the following parameter values: φ1 = 0.5,
φ2 = 0.15, σ1 = 0.5, σ2 = 1.0, ρ12 = −0.6, 0.0, 0.6. These values were considered in
order to illustrate different variability, correlation lengths and different correlations
that the data can present, ranging from strong negative to strong positive values.
Figure 2 illustrates the results for the centered maximum likelihood estimates.
Figure 3 illustrates the results for the maximum likelihood estimates for each
parameter. Table 1 presents the mean, the bias and the mean square error (MSE)
for all estimated parameters.

Table 1 - Mean, Bias and MSE considering the maximum likelihood estimates for
the simulated samples with parameter values: φ1 = 0.5, φ2 = 0.15, σ1 =
0.5, σ2 = 1.0, ρ12 = −0.6, 0.0, 0.6

Parameters
ρ12 = −0.6 ρ12 = 0.0 ρ12 = 0.6

Mean Bias MSE Mean Bias MSE Mean Bias MSE
φ1 0.04987 -0.00012 0.00005 0.05025 0.00025 0.00008 0.04985 -0.00014 0.00005
φ2 0.15089 0.00089 0.00113 0.15103 0.00103 0.00160 0.15049 0.00049 0.00113
σ1 0.50006 0.00006 0.00068 0.50082 0.00082 0.00074 0.50019 0.00019 0.00068
σ2 0.99766 -0.00233 0.00961 0.99663 -0.00336 0.01249 0.99701 -0.00298 0.00959
ρ12 -0.60018 -0.00018 0.00182 0.00042 0.00042 0.00445 0.60066 0.00066 0.00182

The given results suggests that the estimates are unbiased, considering that the
estimated values are very close to the true parameter values for all parameters under
analysis. We also noticed that the variability of the estimates remains practically
the same, when we vary the ρ12 parameter values.

On the next Section 6, we illustrate the application of the proposed SEC
model to a real data set and we compare it with the classic ExpGneiting sep and
ExpGneiting contr models.
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Figure 2 - Centered boxplots of maximum likelihood estimates over 1000 simulated
samples considering φ1 = 0.05, φ2 = 0.15, σ1 = 0.5, σ2 = 1.0 and
ρ12 = −0.6.

6 Data analysis

To illustrate the proposed model we analyzed meteorological data from
Brazil, in the winter of 2019, available on the INMET page (Instituto Nacional
de Meteorologia, website: https://portal.inmet.gov.br/, accessed on 21/11/2020).
We consider 556 automatic stations and the variables pressure (kj/m) and air
temperature (◦C). The geographical coordinates considering both variables are
shown in Figure 4 below.

Figure 4, shows a positive linear correlation between pressure and temperature
with Pearson coefficient of 0.41. Standard deviations are 3.16 for the pressure and
4.60 for the temperature.

When fitting the models, we consider the residuals of the variables as a
bivariate isotropic Gaussian random field X(s) = (XP ,XT ), representing the
pressure and temperature variables, respectively, such that, for the 556 locations,
we have to X(s) ∼ MNM1112(0,C), where C is the covariance matrix of each
model to be estimated.

The models considered here, SEC, ExpGneiting contr and ExpGneiting sep
were parametrized by Ψ = (φ1, φ2, σ

2
1 , σ

2
2 , ρ12) for non-separable models and,

φ1 = φ2, for the ExpGneiting sep model. Table 2 presents the values of the log-
likelihood, Akaike information criterion (AIC) and Bayesian information criterion
(BIC) with models fitted to all 556 data. The parameters estimates considering each
model are given in Table 3. The ExpGneiting contr and ExpGneiting sep models
were estimated using functions from the GeoModels package (BEVILACQUA et al.,
2018).
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Figure 3 - Boxplots of maximum likelihood estimates for each ρ12 parameter values,
considering φ1 = 0.05, φ2 = 0.15, σ1 = 0.5 and σ2 = 1.0 (the red line
represents the true parameter values).

Table 2 - AIC and BIC for each model estimated

Models No of Param LL AIC BIC

ExpGneiting sep 4 -3794.955 7597.91 7617.96
ExpGneiting contr 5 -3787.688 7585.37 7610.44

SEC 5 -3784.936 7579.87 7601.47

Based on results on Table 2, it can observed that the SEC model achieves the
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Figure 4 - Data for (A) pressure (kj/m) and (B) air temperature (◦C), for 556
weather stations in Brazil (winter, 2019).

Table 3 - Maximum likelihood estimates for each model

Models
Estimates

φ̂1 φ̂2 σ̂1 σ̂2 ρ̂12

ExpGneiting sep
Valor 2.39 51.10 3.77 0.64

sd 0.29 3.16 0.22 0.03

ExpGneiting contr
Valor 1.51 2.68 41.98 3.95 0.64

sd 0.18 0.35 2.36 0.25 0.03

SEC
Valor 1.33 2.87 39.98 4.07 0.63

sd 0.16 0.44 2.11 0.30 0.03

largest value of the likelihood and the smallest AIC and BIC values when compared
to the ExpGneiting contr and ExpGneiting sep models.

The predictive behavior is also assessed by a random training selection of 445
locations (80% of the data), from which we estimate the models under study and
compute the mean absolute error (MAE), the root mean square error (RMSE) and
the normalized mean square error (NMSE) measures for each model using cokriging
predictor for the 111 remaining locations (20% of the data). These measures are
defined as,

MAEi =
1

111

111∑
k=1

|Xi(sk)− X̂i(sk)|,

RMSEi =

√√√√ 1

111

111∑
k=1

(Xi(sk)− X̂i(sk))2,
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NMSEi =
RMSE

max(X̂i(sk))−min (X̂i(sk))
,

where X̂i(sk) is the cokriging predictor of the variable Xi(sk), with i = P, T
representing pressure and temperature, respectively. We repeated the same process
200 times, calculating the values of the MAEi, RMSEi and NMSEi measures
for each variable each time. Table 4 presents the mean and standard deviation for
the likelihood values and the calculated errors considering each model estimated
for each variable. Table 5 presents the mean of estimation times over 200 training
samples, considering each model under study.

Table 4 - Mean and standard deviation (sd) for likelihood values and prediction
errors considering 200 splits of data into training (80%) and test (20%)
for each model and each variable

Models
LL MAEP RMSEP NMSEP MAET RMSET NMSET

ExpGneiting sep
Mean -3053.0333 20.8061 30.0619 0.2289 2.0667 2.8096 0.1846

sd 33.4286 2.6460 3.8793 0.0370 0.3966 0.5632 0.0446

ExpGneiting contr
Mean -3047.0162 21.0649 30.2113 0.2340 2.0680 2.8118 0.1839

sd 31.2543 2.6149 3.8302 0.0365 0.3968 0.5644 0.0446

SEC
Mean -3044.3727 16.4669 24.3616 0.1944 1.4501 1.9653 0.1233

sd 30.5524 1.5244 2.6972 0.0251 0.1120 0.1667 0.0118

Table 5 - Mean of estimation times over 200 training samples for each model

Models No of Param user system elapsed

ExpGneiting sep 4 117.0266 0.4255 117.4715
ExpGneiting contr 5 211.5819 0.8665 212.4843

SEC 5 130.7547 0.2280 131.0335

The SEC model presented the smallest values of prediction errors when
compared to ExpGneiting sep and ExpGneiting contr models. In addition, the
SEC model also presented the smallest means of estimation times when compared
to ExpGneiting contr model. When compared to the ExpGneiting sep model, the
means of estimation times of the SEC model were close.

7 Conclusions

This work presents results for the proposed covariance structure with an
exponential correlation function to model problems involving bivariate isotropic
stationary Gaussian spatial data, considering that this is an area of great interest
and modeling multivariate structures is still an active area in spatial data analysis.
The SEC model is relatively simpler and presents promising results when compared
to other models in the literature when applied to bivariate data. The simulation
presented here produced unbiased estimates and low mean square error. We also
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observed that the variability of estimates seems to be invariant to the distinct
correlation parameter values.

For the data analysis, the SEC model presented better AIC and BIC and
prediction errors measures. The SEC model also presented the smallest means
of computing times when compared to ExpGneiting contr model, which has the
same number of parameters and more similar characteristics. The estimates for
the common parameters of both models were similar. When compared to the
ExpGneiting sep model, the means of computing times of the SEC model were
similar.

We conclude that, despite its simpler structure, the proposed covariance
structure, presented results at least as good as the classic ExpGneiting sep and
ExpGneiting contr models. Furthermore, its generalization to more than two
variables might be easier to handle than other more complex models, for example,
the full bivariate Mátern model, since the usual parametric restrictions for the
variance and correlation parameters are sufficient to ensure that the resulting matrix
is positive definite. Therefore, the proposed model is an alternative for modeling
bivariate spatial data with potential to be extended to higher dimensions, something
to be further investigated.

RIBEIRO, A. M.; RIBEIRO JÚNIOR, P. J.; BONAT, W. H. Comparação de
funções de covariância exponencial para dados geostat́ısticos bivariados. Rev. Bras.
Biom., Lavras, v.39, n.1, p.89-102, 2021.

RESUMO: Na análise de campos aleatórios espaciais multivariados, é essencial definir

uma estrutura de covariâncias que modele adequadamente a relação entre as variáveis em

estudo. Nesse sentido, propomos uma estrutura de covariância com função de correlação

exponencial para campos aleatórios bivariados, o modelo SEC. Também comparamos

os ajustes do modelo SEC com o modelo exponencial bivariado separável e o modelo

exponencial bivariado com restrições, que são casos particulares do modelo full bivariado

Matérn, apresentado na literatura. Um estudo de simulação avalia as caracteŕısticas

do modelo proposto. O modelo é ajustado a um conjunto de dados meteorológicos do

Brasil, considerando a importância da análise de dados climáticos para prever condições

ambientais adversas. Medidas preditivas são utilizadas para comparar os modelos em

estudo. Os resultados satisfatórios comparados com as alternativas consideradas e

a estrutura simples fazem do modelo SEC uma alternativa para análise de campos

aleatórios bivariados.

PALAVRAS-CHAVE: Campos aleatórios; Funções de covariância; Modelo exponencial

bivariado; Dados geoestat́ısticos.
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CHILÈS, J.-P.; DELFINER, P.. Geostatistics: modeling spatial uncertainty, 2.ed.,
John Wiley & Sons, 2012. 713p.

DIGGLE, P. J; RIBEIRO JUNIOR, P. J.. Model-based Geostatistics. Springer Series
in Statistics. Springer, 2007. 228p.

GENTON, M.; KLEIBER, W.. Cross-covariance functions for multivariate
geostatistics. Statistical Science, v.30, p.147-163, 2015.

GNEITING, T; KLEIBER, W; SCHLATHER, M.. Matérn Cross-Covariance
Functions for Multivariate Random Fields. Journal of the American Statistical
Association, p.1167-1177, 2010.

GOULARD, M; VOLTZ, M.. Linear coregionalization model: tools for estimation
and choice of cross-variogram matrix. Mathematical Geology, v.24, p.269-286, 1992.

GUTTORP, P.; GNEITING, T.. On the Whittle-Matérn correlation family.
Technical Report Series, 2005.

IP, R. H. L.; LI, W. K.. A class of valid Matérn cross-covariance functions for
multivariate spatio-temporal random fields. Statistics & Probability Letters, v.130,
p.115-119, 2017.

KLEIBER, W.. Coherence for multivariate random fields. Statistica Sinica, v.27,
p.1675-1697, 2017.

MARTINEZ-BENEITO, M. A.. A general modelling framework for multivariate
disease mapping. Biometrika, v.100, p.539-553, 2013.

Rev. Bras. Biom., Lavras, v.39, n.1, p.89-102, 2021 - doi: 10.28951/rbb.v39i1.558 101



PRAUSE, A.; STELAND, A. Estimation of the asymptotic variance of univariate
and multivariate random fields and statistical inference, Electronic Journal of
Statistics, v.12, p.890-940, 2018.

R CORE TEAM. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2020.

SCHLATHER, M.; MALINOWSKI, A.; MENCK, P. J.; OESTING, M.;
STROKORB, K.. Analysis, simulation and prediction of multivariate random fields
with package random fields. Journal of Statistical Software, v.63, p.1-25, 2015.

VALLEJOS, R.; OSORIO, F.; BEVILACQUA, M. Spatial Relationships Between
Two Georeferenced Variables: with Applications in R. Springer, New York, 2020.
194p.

WACKERNAGEL, H.. Multivariate Geostatistics:An Introduction with Applica-
tions. 3.ed., Springer-Verlag, 2013. 388p.

Received on 30.08.2020.

Approved after revised on 28.01.2021.

102 Rev. Bras. Biom., Lavras, v.39, n.1, p.89-102, 2021 - doi: 10.28951/rbb.v39i1.558


