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Abstract
The present work presented an alternative MCC to the Dunnett’s test, called Ferbat’s test. The test re-
placed the root of the mean square of the residue used within Dunnett’s test with another non-biased
σ estimator. The distribution of the test statistics was determined by simulation using the Monte Carlo
method. Comparing the performance evaluation of these two tests, the Ferbat’s test performed better in
some scenarios, such as control of the experimentwise error rate for all simulated situations and higher
power when the number of treatments was small and when the number of replications increases. In the
other evaluation situations, the tests presented equivalent performance.

Keywords: Experimentwise error rate; Power; Simulation.

1. Introduction
Many experiments in applied sciences aim at comparing the treatments to a control or standard

treatment also referred to as many-to-one comparisons. The control treatment represents a refer-
ence in the literature for the studied factor. For example, in the pharmaceutical industry there is a
drug which is always used to combat a headache due to its efficiency. As a market competition, there
are companies that develop new drugs and they want to test them against the standard treatment to
know the relative efficiency of these products, i.e., if the performance of these drugs are equal to or
greater than the drug already used in the market (control).

The method used to answer to these questions in statistics is the multiple comparison procedure
(MCP). The advantage of using a MCP is that its construction is based on the control of the global
significance level for the simultaneous inferences. In particular, to compare new drugs with a control
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is used the multiple comparison with a control (MCC) (Hsu, 1996). This is a particular case, since
the general case of the MCPs a total of n(n – 1)/2 comparisons are made, where n is the number
of treatment levels, and this produce results in confidence intervals which are wider than necessary
and, also,significance small significance levels in the tests. The MCC performed only n comparisons,
that is, it performs the comparison (intervals or tests) between all new treatments with the control.
This tends to present tests with more accurate results, and as asserted by Shaffer (1977), the MCCs
tend to produce more powerful tests for this cases.

In this article, we will be interested in developing a new MCC. Many attempts are made in the
literature in search of an ideal test, that shows an appropriate control of the type I error and high
power. We can highlight the Dunnett’s test (Dunnett, 1955), in cases where samples are random
and independent, from random variables with normal distribution. Other MCCs can be presented
in Dunnett (1994), Hsu (1996), Benjamini et al. (2004), Dmitrienko et al. (2010), Bretz et al. (2011),
Westfall et al. (2011), among others.

We will show the idea behind of the two-sided Dunnett’s test for the case of balanced data
with normal distribution and homoscedasticity in the sequence. Of course, this test extends to
unbalanced data and heteroscedasticity conditions and we will show this restriction for this test, as
these conditions will be the basis for developing the multiple comparison procedure created in this
paper.

Let be a random sample Y11, Y12, . . ., Y1r , Y21, Y22, . . ., Y2r , . . ., Yi1, Yi2, . . ., Yij, . . ., Yir ,
. . ., Yn1, Yn2, . . ., Ynr , Y(n+1)1, Y(n+1)2, . . ., Y(n+1)r , where Yij is the random observation of the ith
treatment in the jth replication, i = 1, 2, . . . , (n + 1) and j = 1, 2, . . ., r. The (n + 1)th treatment is the
standard (control) treatment. The sample mean of the ith treatment is given by

Ȳi. =

∑r
j=1 Yij

r
=
Yi.
r

. (1)

Without loss of generality, we will consider that this sample was submitted to an analysis of
variance, according to the model given by

Yij = µ + τi + ϵij = µi + ϵij, (2)

where ϵij ∼ N(0,σ2) and µi = µ + τi is the mean of the ith treatment. Thus, the mean square of the
error (MSE), estimator of error variance σ2, is given by

MSE =

n+1∑
i=1

r∑
j=1

(Yij – Ȳi.)2

(n + 1)(r – 1)
=

n+1∑
i=1

r∑
j=1

(Yij – Ȳi.)2

ν
, (3)

where ν = (n + 1)(r – 1) is the error degrees of freedom.
The two-sided Dunnett’s test is used to determine which treatments differ of a control treatment.

For balanced experiments, this test provides the following confidence set of the set of simultaneous
range of 100(1 – α)% confidence for the all differences µk – µn+1, k ̸= n + 1, between the mean, µk,
of each treatment in test and the mean of the control treatment, µn+1, given by

Ȳk – Ȳn+1 ± |d|

√
MSE×

(
2
r

)
, k = 1, 2, . . . , n, (4)

where |d| is the solution given by∫ ∞

0

∫ ∞

–∞

[
Φ(z +

√
2|d|s) – Φ(z –

√
2|d|s)

]n
ϕ(z)dzfS(s;ν)ds = 1 – α, (5)
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Φ(.) and ϕ(.) are, respectively, the distribution and density functions from the standard normal
distribution and fS(s;ν) is the density function of S =

√
MSE
σ , given by

fS(s;ν) =
νν/2

Γ (ν/2)2ν/2–1 s
ν–1e–νs2/2, s ≥ 0. (6)

It can be seen that |d| is the upper limit 100α% of the maximum module of the multivariate t
distribution with common correlation ρ = 0.5 and ν degrees of freedom (Dean et al., 2017) (stu-
dentized maximum module distribution). To determine other cases to obtain d distribution see
Dunnett (1964). A more complete work on the non-central multivariate t distribution can be found
in Broch & Ferreira (2013b) and Broch & Ferreira (2013a), where these same authors made available
in CRAN a package R called nCDunnett (Broch & Ferreira, 2015) by computing all these results,
including determining values of d.

The test statistic for applying the two-sided Dunnett’s test of size α, under the null hypothesis
H0 : µk – µn+1 = 0 ∀ k = 1, 2, . . ., n, is given by

|Dk| =
|Ȳk – Ȳn+1|√

2MSE
r

, k = 1, 2, . . . , n. (7)

If |Dk| > |d|, where |d| is the critical level of the studentized maximum module distribution at 100α%,
the null hypothesis should be rejected. The Dunnett’s test performs n simultaneous comparisons with
the control of the overall significance level, as can be observed in Hochberg & Tamhane (1987), Hsu
(1996), Miller (1981), and Dickhaus (2014), among others. This control since an exact distribution
is used for the statistic in the equation (7), which takes into account the multiplicity effect in the
simultaneous comparisons.

A pioneering study of Daly (1946) proposed the use of the sample range in place of root-mean-
square as an estimator of σ, in an analogue of Student’s t-test. The test was called of u-test. Lord
(1947) and Patnaik (1950) went further by using the sample range or mean range as a σ estimator
rather than root-mean-square determined from the sample. They claim that the efficiency of range
estimates of standard deviation is, of course, always less than the root-mean-square estimates. But
Davies & Pearson (1934) and Pearson & Haines (1935) indicated that this efficiency is not accentuated
for samples that not greatly in excess of about 10.

Lord (1950) and Daly (1946) evaluated the power of u-test in some experimental scenarios. In
addition, it has been shown that in spite of some loss of precision, this did not influence in practical
applications, being even compensated by the greater ease of calculation when compared with the
t-test. Daly (1946) stated that the small sample size, the power of u-test was equivalent to that of
the t-test. However, Lord (1950) stated that, in general, the power of the u-test shows a slightly
lower performance than t-test. One of the explanations for the low performance of the u-test, may
be because the distribution of the sample mean range is not obtained accurately, except in special
cases, as observed in Patnaik (1950). Another point cited by the same author is that this statistic is
less efficient than the root-mean-square estimate.

Of course, as already well documented in the literature, the t-test does not control the overall
significance level in simultaneous comparisons. With the results presented by the authors already
mentioned, it suggests that the u-test also does not control.

Therefore, the main ideas about the u-test is outline below. The Statistic of u-test is given by

U = U(i, j) =
Y

W̄/dr
, (8)
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where Y is random variable distributed normally about a mean zero and standard deviation σ, with-
out loss of generality. The dr is some constant to eliminated the bias of a new estimator of the
standard deviation that will be defined latter. The W̄ is the mean of n ranges W , obtained from
n independent samples or subgroups, each containing r observations. We define the sample range
of group i by Wi = maxj(Yij) – minj(Yij) for i = 1, 2, . . . , n and j = 1, 2, . . ., r, and mean range
W̄ =

∑n
i=1 Wi/n. The probability density function of W from the normal population with mean µ

and standard deviation σ is given by

fW (w) =
∞∫

–∞

r(r – 1)ϕσ(y)ϕσ(w + y)
[
Φσ(w + y) – Φσ(y)

]r–2 dy, (9)

as shown by Ahsumullah et al. (2013), where ϕσ e Φσ are the density and distribution functions,
respectively, from the normal population with mean 0 and standard deviation σ.

Ahsumullah et al. (2013) also presents the distributions of the maximum (Y(r)) and minimum
(Y(1)) that are given, respectively, by

fY(r)
(y) = rϕσ(y)[Φσ(y)]r–1, (10)

and

fY(1)
(y) = rϕσ(y)[1 – Φσ(y)]r–1. (11)

We present (10) and (11) according to the parental distribution of interest in this specific case of
normality. The expected value of W can be expressed by

E[W] = E[Y(r)] – E[Y(1)]

=
∫ ∞

–∞
yfY(r)

(y)dy –
∫ ∞

–∞
yfY(1)

(y)dy. (12)

By the symmetry about 0 of ϕσ(.), the E[W] reduce to

E[W] = 2
∫ ∞

–∞
yfY(r)

(y)dy. (13)

Finally, doing the transformation Z = Y/σ and rewriting E[W] by µW , the expected value of
W is given by

µW = σdr , (14)

where dr = 2r
∫∞

–∞ zϕ(z)[Φ(z)]r–1dz, ϕ(z) and Φ(z) are density and distribution functions from the
standard normal population. The equation (14) shows that W̄/dr is an unbiased estimator for σ.

To determine the distribution of U , this statistic will be rewrite by

Q =
U
dr

=
Y
W̄

, (15)

and then multiplying by the corresponding value of dr to obtain the percentage points of the U in
the resulting distribution (Lord, 1947).

Daly (1946) proved that Y and W are statistically independent. Also Patnaik (1950) stated that
if it is known that the sample mean is statistically independent of the range in the sample, then Y
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is, therefore, also independent of the mean range W̄ . Thus the distribution of Q, equation (15), is
given by

fQ(q) =
∫ ∞

∞

∫ ∞

0
fW̄ (w̄)fY (y)dw̄dy. (16)

The analytical form of the U distribution was obtained only for some cases. In the others, Lord
(1947) and Patnaik (1950) used approximations using Gaussian quadrature.

Thus, restricted to the case of comparisons of treatments with a control, this work will develop a
two-sided test based on the Dunnett’s test, using the same ideas that were proposed by Daly (1946)
and Lord (1947) to modify the t-test. The initial idea to construct a two-sided test is that it can be
extended to encompass all contrasts without additional assumptions, as stated by Shaffer (1977) for
the two-sided Dunnett’s test. For this, due to the problems already presented previously, the new
multiple comparison procedure will be done by Monte Carlo simulation.

Therefore, the objectives of this work are to develop an MCC test, called Ferbat, and evaluate
the Ferbat’s test performance against Dunnett’s test performance. The latter will also be evaluated
in the present work, using the literature results as well as the results found in our simulations study.

2. Matherials and Methods
2.1 Ferbat’s test

To develop the Ferbat’s test, a Monte Carlo two-sided test, we consider the family of the n
simultaneous hypotheses defined by expression 17,{

H0 : µk = µn+1, k = 1, 2, . . . , n,
H1 : µk ̸= µn+1, for some k. (17)

For testing this hypothesis let be a random sample Y11, Y12, . . ., Y1r , Y21, Y22, . . ., Y2r , . . ., Yi1,
Yi2, . . ., Yij, . . ., Yir , . . ., Yn1, Yn2, . . ., Ynr , Y(n+1)1, Y(n+1)2, . . ., Y(n+1)r , where Yij is the random
observation of the ith treatment in the jth replication, i = 1, 2, . . . , (n + 1) and j = 1, 2, . . ., r. The
treatment n + 1 is the standard (control) treatment. The parental distribution was considered the
normal distribution N(µi, σ2), ∀ i = 1, 2, . . ., n + 1. The sample mean of the ith treatment is given
by

Ȳi. =

∑r
j=1 Yij

r
=
Yi.
r

. (18)

Under the null H0 hypothesis, µi = µ, ∀ i = 1, 2, . . ., n + 1, the statistic for application of Ferbat’s
two-sided test is given by

FB∗ =
|Ȳk. – Ȳ(n+1).|√

2σ̂
r

, k = 1, 2, . . . , n, (19)

where σ̂ = (W̄/dr∗)2, W̄ is the mean range and dr∗ is the modified constant given by

d∗r =

{
2(r + 0.10r)

∫∞
–∞ zϕ(z)[Φ(z)](r+0.10r)–1dz, if r ≤ 10

2(r + 0.23r)
∫∞

–∞ zϕ(z)[Φ(z)](r+0.23r)–1dz, if r > 10.
(20)

The expression 20 was a result of trial and error simulation to get a more powerful test. Thus,
assuming normality, the algorithm for the application of the test follows the steps below:
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1. A Monte Carlo sample of a completely randomized experimental design with n + 1 treatments
and r replications generate from N(0, 1) distribution. The null hypothesis was imposed by con-
sidering all treatments means equal to the same value, in the case, equal to 0. The variance σ2

was choose as 1. Since the test statistic is an ancillary statistic there is no loss of generality to
chose the common mean as 0 and the variance as 1. Consider the Monte Carlo sample is given
by X11, X12, . . ., X1r , X21, X22, . . ., X2r , . . ., Xi1, Xi2, . . ., Xij, . . ., Xir , . . ., Xn1, Xn2, . . ., Xnr ,
X(n+1)1, X(n+1)2, . . ., X(n+1)r , where Xij is the random observation of the ith treatment in the jth
replication, i = 1, 2, . . . , (n + 1) and j = 1, 2, . . ., r generate from the N(0, 1) distribution. The
sample mean of the ith treatment in the Monte Carlo simulation is given by

X̄i. =

∑r
j=1 Xij

r
=
Xi.
r

. (21)

2. Compute the range for each treatment, that is, Wi = max
i

(X̄i.) – min
i

(X̄i.), i = 1, 2, . . . , n, n + 1;

3. Compute the mean range of the experiment, given by W̄ =
∑n+1

i=1 Wi/(n + 1);
4. Compute the Monte Carlo test statistic FB given by

FB =
|max

k
(X̄k. – X̄(n+1).)|√

2σ̂
r

, k = 1, 2, . . . , n, (22)

where σ̂ = (W̄/dr)2, W̄ is the mean range and dr is the constant given in expression (14).
5. Repeat the steps from 1 to 4 B times. Store the computed value of the Monte Carlo test statistic

computed in (22) in each step of the simulations along with the values previously obtained, if
any. In this paper we used B = 50, 000.

6. Compute the upper quantile α of Monte Carlo distribution of statistic in (22), defined by fb(α,n,r),
based in the step 5.

7. Calculate the statistic of Ferbat’s test, equation (19), to evaluate each k simultaneous hypothesis.
Make a decision to reject the null hypothesis if FB∗ ≥ fb(α,n,r) at the nominal significance level
of α.

The implementation of dr , given by equation (14), has no closed solution. For this, we will use
64 points of Gauss-Legendre quadrature by using a change of the variable given by z = t/(1 – t2),
to arrive at the following approximation expressed by

dr ≈ 2r
64∑
i=1

wi

(
ti

1 – t2i

)
ϕ

(
ti

1 – t2i

)[
Φ

(
ti

1 – t2i

)]r–1
1 + t2i

(1 + t2i )2
, (23)

where ti e wi are the node and weight of Gauss-Legendre quadrature. The procedure for computing
the modified constant (dr∗) was performed similarly.

2.2 Scenarios for the evaluation of Ferbat’s test
Two strategies were considered in this work. The first was to evaluate the experimentwise error

rates (EER or α̂) and the second was to evaluate the power of Ferbat and Dunnett tests. In both
cases, Monte Carlo simulation was used for this purpose.

In each simulation the Ferbat and Dunnett tests were applied at a pre-established nominal signif-
icance level α checking whether or not the null hypothesis was rejected. This process was repeated
N = 2000 times and the proportion of experiments with at least one incorrect decision in the first
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case refers to the empirical EER and in the second case the proportion of rejections that are correct
refers to empirical power.

To verify the effect of Monte Carlo simulation error in the EER, the exact binomial test with
a confidence coefficient of 99% was used to test the hypotheses H0 : α = 5% versus H1 : α ̸= 5%
or H0 : α = 1% versus H1 : α ̸= 1%. If the null hypothesis is rejected and the empirical EER is
considered to be significantly (p – value < 0, 01) lower than the nominal significance level α, the
test will be considered conservative. If the empirical EER is considered significantly (p – value <
0.01) higher than the nominal level, the test will be considered liberal. If the observed value of the
empirical EER is non-significantly (p – value > 0.01) different of the nominal significance level, the
test will be considered exact (Oliveira & Ferreira, 2010).

Considering y the number of null hypotheses rejected in 2000 Monte Carlo simulations, for a
nominal significance level of α, and, also considering the relationship between the F and binomial
distributions (Leemis & Trivedi, 1996), with probability of success p = α, the statistic of test is given
by

F =
(

y + 1
N – y

)(
1 – α

α

)
, (24)

that under H0 has an F distribution with ν1 = 2(N – y) and ν2 = 2(y + 1) degrees of freedom. If F <
F0.005 or F > F0.995, the null hypothesis must be rejected at the significance level of 1% probability,
where F0.005 and F9.995 are, respectively, the 0.005 and 0.995 quantiles of the F distribution with
ν1 and ν2 degrees of freedom (Oliveira & Ferreira, 2010).

In both steps the data were simulated according to the statistical model expressed in (2), where
µ is a general constant settled in 100 for all cases, without loss of generality, τi is the effect of the ith
treatment and ϵij is the effect of a identical and independently distributed random error with mean
0 and common variance σ2. Also, it was assumed that σ2 = 100, without loss of generality. Yet i = 1,
2, . . ., n, n + 1 and j = 1, 2, . . ., r, where r is the number of replications.

In the first step of evaluating the EER, the treatment effects τi were considered equal to 0 for all i,
i = 1, 2, . . ., n, n+1. Thus, the data were generated under a complete null hypothesis, that is, with all
treatments having the same parametric mean. The probability of empirical EER (α̂) was estimated
by the proportion of experiments with at least one difference detected incorrectly in relation to the
total of simulated experiments given by

α̂ =

N∑
k=1

I(Ek = 1)

N
, (25)

where Ek is a binary variable that assumes the value 1 if at least one type I error occurred in the kth
experiment and 0, otherwise, for k = 1, 2, . . ., N and I(Ek = 1) is the indicator function that returns
1 if the conditions is true and 0, otherwise.

In the second step the power was evaluated. Therefore, the treatment effects were simulated
in two cases. The first is called of complete alternative hypotheses H1 and the second of partial
null hypotheses H0p . Besides that, each corresponds to a homogeneous and heterogeneous scenario,
respectively.

Thus, the power in the first case, that is, under complete alternative hypotheses H1 in homo-
geneous scenario, the control treatment effect was considered equal to 0, τn+1 = 0. The others
treatments was fixed and presented by

τ(n+1)–i = τn+1 + δ
σ√
r
, for i = 1, 2, . . . , n, (26)
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where δ = 1, 2, 4, 8, 16 and 32, representing the number of standard errors of difference between
the mean of a specific treatment effect in the homogeneous group and the mean of the control
treatment. Thus, the power was computed by the ratio of rejections among the mean of the control
treatment and the means of the other treatments involving multiples of δ, relative to the total number
of comparisons involving this difference. We have n comparisons per experiment and a total of n×N
comparisons. The ratio between the total number of rejection and the total number of comparisons
corresponds to the estimated power to detect δ standard errors of the difference between the mean
of the control treatment and the means of the other treatments.

In the second case, that is, the power under the complete alternative hypotheses (H1) in het-
erogenous scenario, the control treatment effect was considered equal to 0, τn+1 = 0. The others
was fixed and set by

τ(n–i)+1 = τ(n–i)+2 + δ
σ√
r
, for i = 1, 2, . . . , n, (27)

where δ = 1, 2, 4, 8, 16 or 32, representing the number of standard errors of the difference between
means to specify the consecutive treatments effect compared with the control treatment. Thus, the
power was computed by the ratio of rejections among means involving multiples of δ, relative to
the total number of comparisons involving this difference. We have n comparisons per experiment
between the mean of the control treatment and the means of the other treatments in each experi-
ment. The ratio between the total of rejection for fixed difference and the number of simulations
N corresponds to the power to detect that multiple of δ standard errors of the difference between
the mean of the control treatment and the mean of that specific treatment.

The second option for the study of power under the H0p partial null hypothesis involved a sim-
ulation of two groups of means, with k1 = ⌊(n + 1)/2⌋ e k2 = (n + 1) – k1 means in each, where ⌊x⌋
refers to the largest integer less than or equal to x. The control treatment is allocated to the first
group. The means of the first group were all the same, for which the effects were set to τi = 0, i
= 1, 2, 3, . . ., k1, without loss of generality. The second group, with k2 treatments, had its effects
also specified by equation (26) (homogeneous scenario) and equation (27) (heterogenous scenario),
with the variation of i replaced by i = 1, 2, . . ., k2. In Table 1, we present a summary table of the
scenarios in which the tests will be evaluated.

Table 1. Scenarios of simulation for performance evaluation of Ferbat and Dunnett tests

Scenario Simulation

1 Under complete null hypothesis (H0)

2 Under partial hypothesis (H0p ) in a homogeneous sce-
nario

3 Under partial hypothesis (H0p ) in a heterogeneous sce-
nario

4 Under complete hypothesis (H1, alternative hypothesis)
in a homogeneous scenario

5 Under complete hypothesis (H1, alternative hypothesis)
in a heterogeneous scenario
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2.3 Justifications for the use of the modified constant d∗r on the Ferbat test
After implementing the Ferbat’s test, a few initial results showed that the empirical type I error

was statistically less than or equal to the adopted overall nominal significance level α. This sometimes
provided a conservative test. In this way, the test tended to have less power. These results showed
that in terms of performance the Dunnett’s test was superior, since the Dunnett’s test has an exact
distribution for its statistics, and the evaluation results evidenciated this, as will be shown later.

Thus, as a way of trying to increase the power of the Ferbat’s test and to control the global
nominal significance level, we modify the constant dr of the statistic as showed in (20). However,
to generate the critical points of Ferbat’s test we use the Monte Carlo distribution of the statistic
without this change. This is common in multiple comparison procedures. Tukey (1953) developed
the Tukey’s test with has empirical type I error rates less than the overall significance level, that
means it is a conservative test. After that work, Duncan (1955) tried to do some change in the test
to improve his performance, as also Keuls (1952). These changes led to the Duncan and SNK tests,
respectively.

Another argument for modifying the dr constant is the fact that the standard deviation estimator
W̄/dr is less efficient than the root-mean-square of the residue to estimate the population standard
deviation. Given these considerations, we will present below the performance evaluation of the
Ferbat’s test and compare it with the Dunnett’s test. The performance evaluation of this last test was
also simulated in this work. Besides that, we also will use results presented in the literature on this
test.

3. Results and Discussion
3.0.1 Performance of tests in scenario 1

The results of the empirical EER results for the performance of the tests obtained by simulation in
scenario 1 (Table 1) are shown in Tables 2 and 3. The exact binomial test at the nominal significance
level of 1% was applied in each simulated configurations. The EER receive the identification (++)
for liberal test and receive the identification (––), when it was considered conservative. The former
situation is undesirable because it shows that the test shows type error rates greater than a the nominal
significance level.

We observed that the two tests controlled appropriately the EER at the nominal significance level
in all Monte Carlo simulation cases. We did not achieve any non standard pattern in the behaviour
of EER when the number of treatment or the number of replications change. From now on, we
will represent the number of treatments as m = n + 1, which represents the number of treatments in
the experiment including the control treatment.

Unlike what was presented by Sousa et al. (2012), the Dunnett’s test controls the overall signif-
icance level in the scenario 1 (Table 3), as can be confirmed by Carmer & Walker (1985), Dunnett
(1994), Dunnett (1964). Sousa et al. (2012) states that the Dunnett’s test was liberal, considering 200
Monte Carlo simulations only with 32 treatments and 4 replicates under complete null hypothesis
(H0). They found the experimentwise error rate of Dunnett’s test of 0.092++, a value that exceeds
the critical point of the exact binomial test at a significance level of 1% of probability. One of the
explanations for this high EER value is the low number of simulations, since the α value may be
overinflated due to the Monte Carlo error. Despite the widespread reference of Dunnett’s test con-
trol to experimentwise error rate, few studies in the literature present the results as presented in
Table 3. Conagin et al. (2008) evaluated several MCPs, one of which was the one-sided Dunnett’s
test. The EER of this test was 4.3% in an experiment with 8 treatments, 4 replications and a nominal
significance level of 5%, repeated 400 times. Although the evaluation methodology of this study was
slightly different from this work, the results are equivalent.
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Table 2. Experimentwise type I error rates of Ferbat’s test as a function of the number of treatments (m), the number of
replications (r) and the nominal significance levelα under a complete null hypothesisH0, evaluated by the exact binomial
test with a confidence coefficient of 99% of probability

α

0.01 0.05
HH

HHm
r 4 10 20 4 10 20

5 0.0140 0.0165 0.0155 0.0544 0.0440 0.0575
10 0.0115 0.0110 0.0135 0.0510 0.0555 0.0580
20 0.0155 0.0130 0.0150 0.0570 0.0435 0.0550
40 0.0135 0.0145 0.0125 0.0610 0.0500 0.0610
100 0.0155 0.0115 0.0160 0.0470 0.0370 0.0410
∗ The symbol “- -” indicates that EER was rejected by the exact binomial test, such that F ≤ F0.005 . The symbol “++” indicates that EER was rejected by the exact binomial test, such that

F ≥ F0.995 .

Table 3. Experimentwise type I error rates of Dunnett’s test as a function of the number of treatments (m), the number of
replications (r) and the nominal significance levelα under a complete null hypothesisH0, evaluated by the exact binomial
test with a confidence coefficient of 99% of probability

α

0.01 0.05
HH

HHm
r 4 10 20 4 10 20

5 0.0105 0.0080 0.0065 0.0475 0.0545 0.0530
10 0.0095 0.0090 0.0090 0.0570 0.0545 0.0435
20 0.0080 0.0105 0.0145 0.0500 0.0550 0.0535
40 0.0105 0.0080 0.0075 0.0490 0.0460 0.0555
100 0.0120 0.0110 0.0095 0.0460 0.0480 0.0445
∗ The symbol “- -” indicates that EER was rejected by the exact binomial test, such that F ≤ F0.005 . The symbol “++” indicates that EER was rejected by the exact binomial test, such that

F ≥ F0.995 .
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3.0.2 Performance of tests in scenario 2
We did not find complete studies in the literature for performance of two-sided Dunnett’s test

in scenarios 2 to 5. Table 1 shows results of the condition of homogeneous and heterogeneous
environments in the simulation under partial null hypothesis (H0p ). This condition, under the partial
null hypothesis the scenarios, is more realistic for practical applications.

What we actually have are statements that this test controls the experimentwise error rate. How-
ever, the results are not presented in full. In Tables 4 and 5 we present the EER of Ferbat and Dunnett
tests with m treatments, r replications, δ standards error and significance level α, to the scenario 2.
In general, the tests controlled the nominal level, and are, in certain circumstances, conservative.

The Ferbat’s test is conservative for α = 0.05 and for α = 0.01 when m = 5. For α = 0.01, in the
other simulation settings (m > 5) the test shows exact size controlling the nominal significance level
(Table 4). The Dunnett’s test was conservative in almost all scenario 2 for both nominal significance
levels. Only when m = 100 and α = 0.01 the Dunnett’s test has exact size with control of the EER
at nominal significance level (Table 5). This result is interesting to show that the Dunnett’s test
was conservative under partial null hypothesis (H0p ), even though the results found in the literature
always state that it controls the nominal significance level.

One explanation of why the Dunnett’s test was conservative in most cases of partial null hypoth-
esis in scenario 2, is that the distribution of the test statistic is under the overall null hypothesis. This
implies that the distribution of the test statistic assumes that the m means are equal in its formulation,
when in reality there is a smaller number than this. Thus, the upper quantiles of the distribution are
larger and more difficult to overcome by the treatments that are equal to the control. In the case of
Ferbat’s test this situation are mitigated due to the modified constant dr∗ in its statistic.

Comparing the results of Tables 4 and 5 with the results in Tables 7 and 9, we noticed that the
tests had lower EER in the homogeneous circumstance (scenario 2) than when evaluated in the
heterogeneous case (scenario 3). However, the Ferbat’s test when evaluated for an α = 0.01 showed
better control of the nominal significance level in both cases.

We can also observe in Tables 4 and 5 that only the nominal significance level influenced the
EER of Dunnett and Ferbat tests, that is, the performance of tests was not influenced by the number
of treatments, the number of replications and the number of standard errors. Another assessment
in scenario 2 was the power. In Figure 1, we show the power in an experiment with 4 replications.
Note that the power of the tests tends to decrease with increasing the number of treatments, being
the Ferbat’s test reaching higher levels of power when m is small and equivalent at the power of
Dunnett’s test as m increases (Figure 2). But when the number of standard errors increases, the
power also increases. The tests practically reach power equal to 1 when the difference between
means equals 8 standard errors.
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Table 4. Experimentwise type I error rates of Ferbat’s test under the partial null hypothesis (H0p ) as a function of number
of replications (r), number of treatment m, at the significance level α and with δ standard errors, in scenario 2

α

0.01 0.05

m
HHHHδ

r 4 10 20 4 10 20

5

1 0.0020–– 0.0040–– 0.0060 0.0215–– 0.0185–– 0.0125––

2 0.0040–– 0.0030–– 0.0035–– 0.0190–– 0.0180–– 0.0200––

5 4 0.0050–– 0.0045–– 0.0005–– 0.0235–– 0.0125–– 0.0240––

8 0.0055 0.0035–– 0.0045–– 0.0130–– 0.0180–– 0.0185––

16 0.0035–– 0.0055 0.0035–– 0.0205–– 0.0235–– 0.0235––

32 0.0070 0.0040–– 0.0045–– 0.0165–– 0.0100–– 0.0240––

10

1 0.0100 0.0090 0.0070 0.0295–– 0.0415 0.0340––

2 0.0090 0.0070 0.0070 0.0400 0.0290–– 0.0265––

10 4 0.0085 0.0105 0.0100 0.0345–– 0.0295–– 0.0340––

8 0.0120 0.0090 0.0055 0.0400 0.0230–– 0.0320––

16 0.0080 0.0040–– 0.0090 0.0275–– 0.0385 0.0365––

32 0.0090 0.0080 0.0100 0.0345–– 0.0315–– 0.0280––

20

1 0.0060 0.0080 0.0120 0.0400 0.0310–– 0.0350––

2 0.0090 0.0080 0.0100 0.0370–– 0.0295–– 0.0370––

20 4 0.0110 0.0110 0.0090 0.0320–– 0.0385 0.0355––

8 0.0095 0.0065 0.0080 0.0330–– 0.0310–– 0.0395
16 0.0090 0.0090 0.0110 0.0450 0.0285–– 0.0370––

32 0.0115 0.0095 0.0110 0.0375–– 0.0340–– 0.0300––

40

1 0.0070 0.0065 0.0055 0.0385 0.0280–– 0.0345––

2 0.0095 0.0050–– 0.0070 0.0445 0.0365–– 0.0315––

40 4 0.0125 0.0070 0.0060 0.0390 0.0295–– 0.0320––

8 0.0120 0.0070 0.0080 0.0375–– 0.0280–– 0.0430
16 0.0125 0.0130 0.0110 0.0410 0.0305–– 0.0370––

32 0.0090 0.0105 0.0090 0.0410 0.0395 0.0355––

100

1 0.0135 0.0065 0.0090 0.0360–– 0.0320–– 0.0330––

2 0.0145 0.0090 0.0110 0.0375–– 0.0325–– 0.0360––

100 4 0.0115 0.0085 0.0105 0.0385 0.0330–– 0.0355––

8 0.0125 0.0065 0.0130 0.0480 0.0330–– 0.0310––

16 0.0145 0.0100 0.0090 0.0425 0.0295–– 0.0375––

32 0.0150 0.0115 0.0070 0.0390 0.0315–– 0.0370––

∗ The symbol “- -” indicates that EER was rejected by the exact binomial test, such that F ≤ F0.005 . The symbol “++” indicates that EER was rejected by the exact binomial test, such that
F ≥ F0.995 .
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Table 5. Experimentwise type I error rates of Dunnett’s test under the partial null hypothesis (H0p ) as a function of number
of replications r, number of treatments m, at the significance level α and with δ standard errors, in scenario 2

α

0.01 0.05

m
HHHHδ

r 4 10 20 4 10 20

5

1 0.0015–– 0.0040–– 0.0040–– 0.0180–– 0.0120–– 0.0180––

2 0.0020–– 0.0040–– 0.0030–– 0.0180–– 0.0160–– 0.0145––

5 4 0.0025–– 0.0010–– 0.0025–– 0.0190–– 0.0190–– 0.0155––

8 0.0050–– 0.0035–– 0.0025–– 0.0195–– 0.0175–– 0.0175––

16 0.0025–– 0.0045–– 0.0030–– 0.0165–– 0.0105–– 0.0125––

32 0.0025–– 0.0025–– 0.0020–– 0.0120–– 0.0125–– 0.0170––

10

1 0.0070 0.0040–– 0.0030–– 0.0270–– 0.0275–– 0.0315––

2 0.0050–– 0.0050–– 0.0055 0.0250–– 0.0315–– 0.0255––

10 4 0.0050–– 0.0065 0.0055 0.0305–– 0.0280–– 0.0235––

8 0.0030–– 0.0035–– 0.0040–– 0.0205–– 0.0210–– 0.0250––

16 0.0045–– 0.0050–– 0.0045–– 0.0230–– 0.0280–– 0.0265––

32 0.0045 0.0055 0.0050 0.0285–– 0.0245–– 0.0280––

20

1 0.0050–– 0.0030–– 0.0040–– 0.0280–– 0.0250–– 0.0285––

2 0.0080 0.0050–– 0.0050–– 0.0280–– 0.0235–– 0.0315––

20 4 0.0020–– 0.0045–– 0.0055 0.0240–– 0.0235–– 0.0235––

8 0.0030–– 0.0050–– 0.0040–– 0.0305–– 0.0325–– 0.0275––

16 0.0050–– 0.0045–– 0.0045–– 0.0220–– 0.0240–– 0.0330––

32 0.0045–– 0.0070 0.0065 0.0280–– 0.0295–– 0.0255––

40

1 0.0045–– 0.0035–– 0.0035–– 0.0275–– 0.0270–– 0.0295––

2 0.0050–– 0.0050–– 0.0055–– 0.0265–– 0.0245–– 0.0280––

40 4 0.0055 0.0050–– 0.0040–– 0.0275–– 0.0285–– 0.0275––

8 0.0070 0.0060 0.0070 0.0390 0.0365–– 0.0355––

16 0.0060 0.0050–– 0.0055 0.0360–– 0.0290–– 0.0295––

32 0.0055 0.0060 0.0030–– 0.0275–– 0.0370–– 0.0340––

100

1 0.0060 0.0060 0.0065 0.0270–– 0.0305–– 0.0270––

2 0.0025–– 0.0055 0.0035–– 0.0300–– 0.0270–– 0.0240––

100 4 0.0060 0.0090 0.0085 0.0350–– 0.0295–– 0.0295––

8 0.0070 0.0050–– 0.0045–– 0.0285–– 0.0325–– 0.0270––

16 0.0055 0.0060 0.0070 0.0320–– 0.0405 0.0365––

32 0.0060 0.0045–– 0.0110 0.0300–– 0.0335–– 0.0345––

∗ The symbol “- -” indicates that EER was rejected by the exact binomial test, such that F ≤ F0.005 . The symbol “++” indicates that EER was rejected by the exact binomial test, such that
F ≥ F0.995 .
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Figure 1. Power of Ferbat and Dunnett tests, under the partial null hypothesis (H0p ) as a function of number of treatments
m, standard errors δ, with r = 4 replications, at the significance level α: (a) α = 0.01 and (b) α = 0.05, in scenario 2.

When the number of standard errors is small (the most real situation in practical terms), the
Ferbat’s test tends to have a higher power than the Dunnett’s test (Figure 2). As the difference
between the true means increases, the tests show power very close to each other. In Figure 2, we
observed that the number of replications has no major influence on the power of the tests when
the true difference is fixed as number of true standard error of the mean δ. However, as well as the
experimentwise error rate, the nominal significance level also influenced the power of the tests as
expected theoretically. The tests had greater power at the nominal level of 0.05, with the power
of Ferbat’s test being greater than the power of Dunnett’s test. The Tukey and Scheffé tests, for
example, control the EER under the partial null hypothesis (Carmer & Swanson, 1973). However,
when the number of treatments increases, the EER of these tests tends to 0 when the difference
between means is at least 2 standard errors (Perecin & Malheiros, 1989). As a result, these tests have
very low powers.

We can see from these results that Ferbat and Dunnett tests have more power than the MCPs1
when the problem of the experiment focuses on comparing the treatments with a control, as stated
by Shaffer (1977). As an example, under this same simulation scenario, we applied the Tukey test to
compare with the power of Ferbat and Dunnett tests (Table 6). The results confirm what is observed
in the literature. An interesting result, however, is that the Ferbat’s test is more powerful than the
Dunnett’s test and may be a test alternative for multiple comparison procedures with a control. The
t and Duncan tests, for example, are more powerful than the Ferbat and Dunnett tests when looking
at the results found by Carmer & Swanson (1973). However, this is due to the high experimentwise
error rates, since they show higher test sizes than the nominal significance levels.

1Of course we are restricted to MCPs that control the experimentwise error rate.
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Table 6. Power of Tukey, Dunnett and Ferbat tests to detect a difference between means of δ = 4 standard errors, under
the partial null hypothesis (H0p ) as a function of number of replications, treatments m at the significance level α = 0.05, in
scenario 2

Power of tests

Treatment Replication Tukey Dunnett Ferbat

4 0.4348 0.5522 0.6040
5 10 0.5025 0.6080 0.6502

20 0.5207 0.6402 0.6568

4 0.3046 0.4857 0.5497
10 10 0.3487 0.5315 0.5584

20 0.3595 0.5564 0.5878

4 0.2069 0.4469 0.4661
20 10 0.2295 0.4680 0.4834

20 0.2321 0.4770 0.5071

4 0.1312 0.3936 0.4326
40 10 0.1416 0.3897 0.3983

20 0.1422 0.4122 0,4265

4 0.0665 0.3010 0.3361
100 10 0.0690 0.3209 0.3186

20 0.0688 0.3170 0.3416
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Figure 2. Power of Ferbat and Dunnett tests under the partial null hypothesis (H0p ) as a function of number of treatments
m, replications r, with (a) α = 0.01 and δ = 1, (b) α = 0.05 and δ = 1, (c) α = 0.01 and δ = 2, (d) α = 0.05 and δ = 2, (e)
α = 0.01 and δ = 4, (f) α = 0.05 and δ = 4, in scenario 2.

3.0.3 Performance of tests in scenario 3
Only a few MCPs in the literature control the EER at nominal significance level in this scenario.

It should be noticed that the relationship between experimentwise (EER) and comparisonwise (CER)
error rates of MCPs shows that a test that controls the first type of error rate will control the second,
but the reverse is not true (Carmer & Swanson, 1973; Boardman & Moffitt, 1971). These authors
mentioned, for example, the Duncan, Waller-Duncan, t tests among others, that control the CER
but they do not control the EER under the complete null hypothesis H0. Consequently, under the
partial null hypothesis (H0p ), these tests will hardly control the EER, as can be observed also in the
results of Bernhardson (1975) and Perecin & Malheiros (1989). Conagin (1999), Carmer & Swanson
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(1973) and Silva et al. (1999) mentioned the Tukey, Scheffé, Dunnett, SNK and Scott-Knott tests
that control the EER at the nominal significance level under complete null hypothesis. However,
these authors showed that the last two tests do not control the EER under partial null hypothesis,
but Tukey, Scheffé and Dunnett tests control the ERR in a conservative way.

In Tables 7 and 9 show the EER of Ferbat and Dunnett tests with the number of treatments of 40,
to the scenario 3. For other values of m, the results were similar. None of the EER is significant high
than the nominal levels in the exact binomial test. In general, the tests controlled the experimentwise
type I error rates or they were conservative. This is a characteristic of the MCPs that control EER
under this condition of scenario 3, when they also control the experimentwise error rate under
complete null hypothesis.

UnderH0p the tests were conservative at significance levelα = 0.05, that is, the EER was below of
the nominal significance level, in all cases. Whenα = 0.01, the tests preserved the overall significance
level in most cases. However, in some simulations, the tests were conservative. For example, in Table
7, the Ferbat’s test was conservative for r = 4 and k×δ = 1×16 = 16 standard errors, with α̂ = 0.0033.
By the exact binomial test, at the 1% significance level, the test was considered conservative, and
therefore the α̂ received the superscript (––). However, for this same simulation setup, the Dunnett’s
test controlled the overall significance level (Table 9). But when we look at tables 4 and 5 as well as
tables 7 and 9, the Dunnett’s test shows several cases in which it was conservative compared to the
Ferbat’s test. This shows that for α = 0.01, the Ferbat’s test better controlled the nominal significance
level. The justification for the tests being conservative in these scenarios is the same as in scenario 2.

Another interesting evaluation when looking at Tables 7 and 9 are the initial gaps (k) in terms of
standard errors, being represented by the constant k, between the control treatment and the other
treatments. For the same difference between the control treatment and the other treatments, the
EER were equivalent. Note in Table 8 that both the EER and the power of the tests for the same
kδ = 4 standard errors are the same no matter the value of k, that is, from the initial gap. Small
variations in values occur due to Monte Carlo simulation error.
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Table 7. Experimentwise type I error rates of Ferbat’s test under the partial hypothesis H0p as a function of number of
replications (r), with m = 40 treatments, at the significance level α and kδ standard errors, in scenario 3

α

0.01 0.05

k
HHHHδ

r 4 10 20 4 10 20

1

1 0.0120 0.0070 0.0075 0.0365–– 0.0255–– 0.0360––

2 0.0070 0.0070 0.0055 0.0305–– 0.0255–– 0.0280––

1 4 0.0060 0.0070 0.0070 0.0275–– 0.0280–– 0.0315––

8 0.0120 0.0065 0.0055 0.0325–– 0.0235–– 0.0320––

16 0.0075 0.0035–– 0.0055 0.0255–– 0.0245–– 0.0380––

32 0.0110 0.0055 0.0095 0.0335–– 0.0210–– 0.0315––

2

1 0.0035–– 0.0065 0.0055 0.0335–– 0.0270–– 0.0265––

2 0.0105 0.0055 0.0065 0.0285–– 0.0255–– 0.0355––

2 4 0.0065 0.0050–– 0.0110 0.0275–– 0.0280–– 0.0275––

8 0.0080 0.0055 0.0070 0.0310–– 0.0240–– 0.0225––

16 0.0065 0.0060 0.0055 0.0350–– 0.0245–– 0.0310––

32 0.0105 0.0050–– 0.0065 0.0260–– 0.0235–– 0.0305––

4

1 0.0060 0.0070 0.0065 0.0310–– 0.0270–– 0.0220––

2 0.0100 0.0045–– 0.0060 0.0305–– 0.0210–– 0.0245––

4 4 0.0050–– 0.0045–– 0.0070 0.0285–– 0.0225–– 0.0225––

8 0.0090 0.0065 0.0040–– 0.0370–– 0.0320–– 0.0325––

16 0.0110 0.0090 0.0065 0.0290–– 0.0245–– 0.0270––

32 0.0055 0.0040–– 0.0085 0.0315–– 0.0255–– 0.0335––

8

1 0.0090 0.0055 0.0085 0.0280–– 0.0230–– 0.0255––

2 0.0055 0.0085 0.0060 0.0320–– 0.0305–– 0.0340––

8 4 0.0090 0.0045–– 0.0075 0.0375–– 0.0220–– 0.0245––

8 0.0110 0.0020–– 0.0095 0.0270–– 0.0235–– 0.0330––

16 0.0060 0.0045–– 0.0090 0.0315–– 0.0295–– 0.0330––

32 0.0100 0.0060 0.0040–– 0.0345–– 0.0210–– 0.0265––

16

1 0.0095 0.0115 0.0075 0.0385 0.0300–– 0.0275––

2 0.0070 0.0080 0.0050–– 0.0310–– 0.0275–– 0.0315––

16 4 0.0080 0.0050–– 0.0110 0.0295–– 0.0220–– 0.0240––

8 0.0070 0.0055 0.0130 0.0335–– 0.0295–– 0.0235––

16 0.0095 0.0050–– 0.0100 0.0375–– 0.0300–– 0.0295––

32 0.0110 0.0075 0.0085 0.0290–– 0.0285–– 0.0290––

∗ The symbol “- -” indicates that EER was rejected by the exact binomial test, such that F ≤ F0.005 . The symbol “++” indicates that EER was rejected by the exact binomial test, such that
F ≥ F0.995 .
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Table 8. Experimentwise type I error rates and Power of Ferbat and Dunnett tests under the partial hypothesis (H0p ) as a
function of number of replications (r), with n = 40 treatments, at the significance level α and kδ = 4 standard errors, in
scenario 3

α

0, 01 0, 05

k
HHHHδ

r 4 10 20 4 10 20

Experimentwise error rate

Ferbat’s
test

1 4 0.0060 0.0070 0.0070 0.0275 0.0280 0.0315
2 2 0.0105 0.0055 0.0065 0.0285 0.0255 0.0355
4 1 0.0060 0.0070 0.0065 0.0310 0.0270 0.0220

Dunnett’s
test

1 4 0.0055 0.0045 0.0055 0.0345 0.0295 0.0300
2 2 0.0055 0.0060 0.0040 0.0300 0.0280 0.0365
4 1 0.0050 0.0040 0.0055 0.0245 0.0275 0.0325

Power

Ferbat’s
test

1 4 0.2440 0.2250 0.2545 0.4175 0.3705 0.3845
2 2 0.2425 0.2085 0.2575 0.3765 0.3840 0.4130
4 1 0.2240 0.2265 0.2375 0.3805 0.3630 0.3630

Dunnett’s
test

1 4 0.2060 0.2195 0.2335 0.3725 0.3815 0.3880
2 2 0.1950 0.2370 0.2315 0.3865 0.4035 0.3900
4 1 0.2075 0.2000 0.2250 0.3930 0.3995 0.4000
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The experimentwise error rate and power of tests in detecting a kδ standard error are equivalents,
regarding the tests were applied in experiments with greater dispersion or not. The justification of
this result is that in the simulation pattern the true difference between means is always fixed in
terms of standard error. The power of the same configuration from Tables 7 and 8 is shown in
Figure 3. The power of the tests were close, and it is confirmed once again that it increases as δ
and the nominal significance level also increase. Apparently, in Figure 3 the number of replications
does not influence the power of the tests. However, when we look at Figure 4, we notice when m
is small, the power increases with increasing number of replications r. As the number of treatments
m increases, the number of replications r does not influence the power of the tests.

Dunnett’s test Ferbat’s test Dunnett’s test Ferbat’s test

Figure 3. Power of Ferbat and Dunnett tests under the partial null hypothesisH0p , withm = 40 treatments, standard errors
δ, replications r, at the significance level α (a) α = 0.01 and b) α = 0.05), in scenario 3.

In Figure 4 can be noticed that once again the Ferbat’s test has greater power when m is small.
However, when m increases the Dunnett’s test has a slightly higher power than the Ferbat’s test,
which did not occur in scenario 2.
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Figure 4. Power of Ferbat and Dunnett tests under the partial null hypothesis H0p as a function of number of treatments
m, the number of replications r, with (a) α = 0.01 and δ = 1, (b) α = 0.05 and δ = 1, (c) α = 0.01 and δ = 2, (d) α = 0.05
and δ = 2, (e) α = 0.01 and δ = 4, (f) α = 0.05 and δ = 4, in scenario 3.
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Table 9. Experimentwise type I error rates of Dunnett’s test under the partial hypothesis H0p as a function of number of
replications (r), withm = 40 treatments, at the significance levelαand kδ standard errors, in an experiment on the scenario
3

α

0, 01 0, 05

k
HHHHδ

r 4 10 20 4 10 20

1

1 0.0060 0.0035–– 0.0080–– 0.0275–– 0.0260–– 0.0280––

2 0.0050–– 0.0055 0.0065 0.0360–– 0.0240–– 0.0335––

1 4 0.0055 0.0045–– 0.0055 0.0345–– 0.0295–– 0.0300––

8 0.0045–– 0.0060 0.0095 0.0210–– 0.0275–– 0.0300––

16 0.0050–– 0.0065 0.0030–– 0.0305–– 0.0295–– 0.0310––

32 0.0065 0.0070 0.0070 0.0285–– 0.0285–– 0.0260––

2

1 0.0050–– 0.0045–– 0.0065 0.0310–– 0.0275–– 0.0265––

2 0.0050–– 0.0060 0.0040–– 0.0300–– 0.0280–– 0.0365––

2 4 0.0045–– 0.0055 0.0035–– 0.0265–– 0.0275–– 0.0285––

8 0.0045–– 0.0050–– 0.0020–– 0.0320–– 0.0330–– 0.0350––

16 0.0045–– 0.0065 0.0065 0.0355–– 0.0300–– 0.0305––

32 0.0030–– 0.0055 0.0065 0.0335–– 0.0195–– 0.0295––

4

1 0.0050–– 0.0040–– 0.0055 0.0245–– 0.0275–– 0.0325––

2 0.0060 0.0045–– 0.0040–– 0.0320–– 0.0235–– 0.0300––

4 4 0.0060 0.0045–– 0.0060 0.0340–– 0.0325–– 0.0275––

8 0.0085 0.0055 0.0055 0.0295–– 0.0285–– 0.0370––

16 0.0050–– 0.0055 0.0045–– 0.0270–– 0.0275–– 0.0285––

32 0.0050–– 0.0080 0.0040–– 0.0290–– 0.0235–– 0.0235––

8

1 0.0035–– 0.0035–– 0.0065 0.0345–– 0.0275–– 0.0340––

2 0.0045–– 0.0040–– 0.0030–– 0.0310–– 0.0295–– 0.0300––

8 4 0.0060 0.0045–– 0.0060 0.0325–– 0.0250–– 0.0290––

8 0.0050–– 0.0045–– 0.0055 0.0345–– 0.0295–– 0.0320––

16 0.0075 0.0055 0.0075 0.0320–– 0.0310–– 0.0245––

32 0.0060 0.0035–– 0.0055 0.0290–– 0.0315–– 0.0295––

16

1 0.0055 0.0010–– 0.0070 0.0295–– 0.0350–– 0.0235––

2 0.0040–– 0.0045–– 0.0075 0.0335–– 0.0290–– 0.0270––

16 4 0.0060 0.0060 0.0070 0.0280–– 0.0290–– 0.0255––

8 0.0060 0.0065 0.0070 0.0355–– 0.0280–– 0.0285––

16 0.0055 0.0075 0.0065 0.0240–– 0.0255–– 0.0300––

32 0.0070 0.0065 0.0050–– 0.0270–– 0.0270–– 0.0270––

∗ The symbol “- -” indicates that EER was rejected by the exact binomial test, such that F ≤ F0.005 . The symbol “++” indicates that EER was rejected by the exact binomial test, such that
F ≥ F0.995 .
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3.0.4 Performance of tests in scenario 4
In the scenario 4, we evaluated the power of the tests under the complete alternative hypothesis

H1. Both the significance level and the difference between means (δ) have effect in the power of the
tests. The higher these values the greater the power of the tests (Figure 5).

Dunnett test Ferbat test Dunnett test Ferbat test

Figure 5. Power of Ferbat and Dunnett tests under the alternative hypothesis (H1) as a function of number of treatments
m, standard errors δ, with r = 10 replications, at the significance level (α) (a) α = 0.01 and b) α = 0.05), in scenario 4.

As the number of treatments increases the power of the tests decreases. When α = 0.01 and
m = 100, the power of the tests is close to zero (Figure 6). This means that under this condition, the
probability of detecting a real difference of 1 standard error between treatments and control is very
low. This is very common issue in the tests like Tukey and Scheffé, among others, that are based on
the control of the experimental error rates.

Figure 6 shows how the number of replications influences the power of the tests for several
number of treatments and number of replications. When m increases, regardless of the number of
replications, the power of the tests does not vary greatly.

In this scenario, we realize that the Ferbat’s test may be recommended as an option of a MCC
when compared to the Dunnett’s test, since it has greater power when the number of treatments
and especially of replications is higher. However, the power of tests when m increases is practically
equivalent, and once again, the Ferbat’s test may be an alternative to MCC.
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Dunnett’s test Ferbat’s testDunnett’s test Ferbat’s test

Figure 6. Power of Ferbat and Dunnett tests under the alternative hypothesis (H1) as a function of number of treatments
m, number of replications r, with (a) α = 0.01 and δ = 1, (b) α = 0.05 and δ = 1, (c) α = 0.01 and δ = 2, (d) α = 0.05 and
δ = 2, (e) α = 0.01 and δ = 4, (f) α = 0.05 and δ = 4, in scenario 4.

3.0.5 Performance of tests in scenario 5
In the last evaluation scenario, scenario 5, the power of the tests are shown in Table 10 and 11,

for a setting of m = 10, δ standard errors, replications r, and significance level α. The results were
summarized, because for the other values of m they have the same pattern. As mentioned earlier in
scenario 3, the power of the tests was not influenced by the initial gaps (k) between means. The
convergence of the power to 1 occurs from 8 standard errors of difference. For the Ferbat and
Dunnett tests, the power increases with increasing the significance level α and δ and decreasing the
number of treatments m. The number of replications has certain influence with a small number of
treatments, that is, as the number of replications increases the power of the tests increases.
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Table 10. Power of Ferbat’s test to detect a difference between means of kδ standard errors under alternative hypothesis
H1 as a function of number of replications r, with m = 10 treatments, at the significance level α, in scenario 5

α

0, 01 0, 05

k
HH

HHδ
r 4 10 20 4 10 20

1

1 0.0045 0.0075 0.0090 0.0210 0.0220 0.0250
2 0.0245 0.0255 0.0375 0.1060 0.0980 0.1035
4 0.2850 0.3205 0.3580 0.5080 0.5420 0.5700
8 0.9840 0.9890 0.9925 0.9955 0.9945 0.9985
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
32 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2

1 0.0275 0.0435 0.0430 0.0970 0.0900 0.1000
2 0.2950 0.3460 0.3895 0.5190 0.5315 0.5770
4 0.9825 0.9905 0.9920 0.9960 0.9990 0.9980
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
32 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

4

1 0.3135 0.3315 0.3710 0.5205 0.5340 0.5615
2 0.9805 0.9895 0.9930 0.9970 1.0000 0.9985
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
32 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

8

1 0.9820 0.9925 0.9950 0.9950 0.9970 0.9985
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
32 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 11. Power of Dunnett’s test to detect a difference between means of kδ standard errors under alternative hypothesis
H1 as a function of number of replications r, with n = 10 treatments, at the significance level α, in scenario 5

α

0, 01 0, 05

k
HH

HHδ
r 4 10 20 4 10 20

1

1 0.0065 0.0045 0.0050 0.0250 0.0290 0.0240
2 0.0185 0.0295 0.0365 0.0930 0.0875 0.0970
4 0.2690 0.3370 0.3265 0.5095 0.5410 0.5460
8 0.9755 0.9895 0.9920 0.9955 0.9975 0.9980
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
32 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2

1 0.0305 0.0375 0.0370 0.0920 0.0980 0.0965
2 0.2880 0.3215 0.3270 0.4975 0.5385 0.5550
4 0.9805 0.9900 0.9935 0.9960 0.9985 0.9975
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
32 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

4

1 0.2495 0.3020 0.3325 0.4960 0.5295 0.5460
2 0.9795 0.9890 0.9930 0.9970 0.9960 0.9990
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
32 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

8

1 0.9745 0.9885 0.9935 0.9965 0.9980 0.9970
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
32 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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An interesting result found in this study was the influence of the heterogeneity on the power
of the Ferbat and Dunnett tests (homogeneous and heterogeneous cases), previously described. In
scenarios 2 and 3, with m = 40, δ = 4, α = 0.05, 4, 10, and 20 replications, the power values of the
Ferbat’s test (homogeneous scenario) were 0.4326, 0.3989 and 0.4265, respectively. In this same
configuration, but in the heterogeneous scenario, the power values of this test were 0.4175, 0.3705
and 0.3845, respectively. For the Dunnett’s test the power values in this setting were 0.3936, 0.3897,
0.4122 (homogeneous scenario) and 0.3725, 0.3815, 0.3880 (heterogeneous scenario). We realized
that the power of the two tests in the homogeneous environment was superior to the power in the
heterogeneous environment.

In scenario 4 and 5, in the simulated configuration with m = 5, δ = 2, α = 0.05, with 4, 10
and 20 replications, the powers of the Ferbat’s test in the homogeneous case were 0.1463, 0.1530
and 0.1623, respectively. For the heterogeneous scenario, the powers were 0.1170, 0.1345 and
0.1695, respectively. Considering the Dunnett’s test, the powers for these situations were 0.1372,
0.1417 and 0.1545 (homogeneous scenario) and 0.1280, 0.1270 and 0.1496 (heterogeneous scenario),
respectively. Only the power of the Ferbat’s test for r = 20 in the homogeneous case was lower than
the power in the heterogeneous environment. However, this difference was very small.

Again, in scenarios 4 and 5, the power of the test in the homogeneous environment was superior
to the power in the heterogeneous case in almost all circumstances. One explanation for these results
in all scenarios refers to the high entropy that occurs between treatments in the heterogeneous case,
which leads to a loss of precision in the mean square of the residue for Dunnett’s test and in the
mean of the ranges for the Ferbat’s test.

4. Applications
We adapted the example in Dunnett (1955), section II in item (b), and we considered the example

for balanced data. Thus, for all treatments we consider four replications. The following data are
blood count measurements on three groups of animals, one of which served as a control while the
other two were treated with two drugs. The data are presented in the Table 12.

Table 12. Blood count measurements on three groups of animals

Blood Counts (millions of cells per cubic millemeter)

Controls Drug A Drug B

7.40 9.76 12.80
8.50 8.80 9.68
7.20 7.68 12.16
8.24 9.36 9.20

Sums: 31.34 35.60 43.84
r: 4 4 4
Means: 7.84 8.90 10.96
Range: 1.30 2.08 3.60

According to the algorithm presented in subsection 2.1, the Ferbat’s test statistic between the
control treatment and the Drug A treatment is

FB∗ =
|7.84 – 8.90|

0.78
= 1.36, (28)
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since W̄ = 2.33, d∗r = 2.10 (r ≤ 10) and r = 4. The critical point of the test, at the significance
level of 5% probability, according to step 6 (subsection 2.1) for B = 100.000, is 2.53. Therefore,
as |1.36| < 2.53, the drug A has an effect equivalent to that of the control treatment. The same
procedure is done between the control treatment and drug B, and the test statistic was 4.0. As the
critical point is the same as the previous one, we observed statistical differences between the effect
of drug B and the effect of the control treatment.

5. Conclusions
We note that the Dunnett’s test is very complete for comparing treatments with a control because

it controls the experimentwise error rate, it has high power and it can be used for unbalanced
data. The test can also be applied as an one-sided and two-sided test. However, we observed in
the results presented that a proposal for a two-sided test for a MCC, the Ferbat’s test presented a
performance similar to the Dunnett’s test, and in some situations this test was superior, in particular,
in the experiments with lower number of treatments and higher number of replications. Another
advantage of the Ferbat test is that no information will be needed on the results of the variance
analysis, such as the root-mean-square of the residue. The test is based on the calculation of mean
ranges, making it easier to calculate.

The Ferbat’s test performed well due to the replacement of the population standard deviation
estimator, which instead of using the root-mean-square of the residue, we used W̄/dr for the Ferbat’s
test statistic. And yet, with the modified constant dr∗, we get more power than the Dunnett’s test
for some cases. However, its limitations of being used only in balanced data and being applied as a
two-sided test will be overcome in a future work. Also, with the exact distribution of statistics we
can achieve better performance for this test.

It is noteworthy that this paper was not intended to replace the Dunnett’s test with the Fer-
bat’s test, but rather to present a MCC alternative to the multiple comparison procedures with one
control.
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