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1. Introduction 

The applications of statistical survival models to data analysis in the clinical area have 

increased considerably in recent years. These consist of observing the moment or instants of time 

in which each patient experiences one or more events simultaneously. In these cases, classical 

models such as Kaplan & Meier (1958) or competing risk analysis are applied (Pintilie, 2006). If 

the occurrence of several events in the same patient is analyzed, these models do not capture the 

true survival probability because the time of occurrence of the different events depends on each 

other. This is an important characteristic that is ignored in those models that yield biased results. 

When considering the occurrence of several events on the same patient, the assumption of 

independence between the failure times of each event must be carefully revised since estimates 
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can be biased if the dependence between them is ignored (Taylor & Peña, 2013 and Boracchi & 

Orenti, 2015). When considering different types of events experienced by the same patient during 

his/her follow-up period, a partial history of the event is observed, so that independence between 

failure times of different events can rarely be assumed (Boracchi & Orenti, 2015). 

Unlike the competing-risk events considered by Zheng & Klein (1995) and Lo & Wilke (2010), 

we propose an alternative survival model for different events that generate another one whose 

failure times are not independent based on copula functions of the Archimedean family and the 

history of different events experienced by the same statistical unit, defined here as the mean 

cumulative function for non-recurrent events of different types (MCFR ̅E). On the other hand, a 

new event can arise from the occurrence of a sequence of non-terminal events of different types 

on the same statistical unit, which we define as a compound event. This compound event is the 

result of the accumulation of individual events and has a different effect than that observed for 

each event. Its structure resembles a series system, a parallel structure system, or a system of the 

r-out-of-k form. Based on the characteristics of the available dataset, the compound event is 

studied here as a series system. If failure times depend on each other, the survival probabilities 

estimated by the proposed model are expected to differ from those obtained by classical survival 

models; otherwise, the estimates coincide. To our knowledge, there are no papers considering 

dependent failure times based on copula functions of the Archimedean family and the mean 

cumulative function for non-recurrent events of different types. 

 The proposed model is applied to a cohort of N=115 patients with a positive diagnosis of the 

human immunodeficiency virus (HIV), suffering from hepatitis B and under clinical treatment. 

They all attended the Hospital Universitario de Los Andes in Mérida-Venezuela every six months 

for their respective clinical check-ups during the follow-up period from January 2007 to December 

2013. These patients were medicated with antiretrovirals according to the criteria established by 

the national health authority following the World Health Organization (WHO, 2013) for this type 

of mandatory reporting of infections (see Timaure, 2017). 

The objective is to estimate their probability of survival from the occurrence of at least one of 

the two events related to the clinical manifestations of HIV, which in the long run may generate 

the acquired immunodeficiency syndrome (AIDS) event. For each patient, the events occurred at 

different instants of time during the follow-up period. The survival probabilities estimated with 

the proposed model are compared with the results of the Kaplan- Meier model. Our results show 

that if dependent failure times are treated as independent, the traditional estimates are biased.  

 

2. Methodology: Description of the Proposed Survival Model 
 

2.1 The Compound Event 

In the clinical area, some pathologies depend on the occurrence of several events experienced 

by the same patient over time. This result is considered a compound event. Suppose that each 

patient i=1, 2, …, N is exposed to experience k different events, k=1, 2, …, K, at different instants 

of time, say Ti1, Ti2, …, Tik, with a cumulative distribution function Fk(tk) and a survival function 

Sk(tk).  

The compound event consists of a subset of events of different types k that act simultaneously 

on the same patient and has the property of producing another different effect. Each patient can 

experience a maximum of Ki events, with Ki ≤ K; the compound event will be made up of r 

individual events of order k, with t ≤ Ki. If r=k, the compound event consists of all k different 

events. If r=1, the compound event consists of at least one event; that is, there must be at least one 

event k for the compound event to occur. If r=g<K, the compound event consists of a subset of at 

least g events of different types k.  

The proposed model and the estimated survival probability vary according to the composition 

of the compound event. Following Peña et al. (2018), this event depends on the objective of the 
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study, the meaning of the operational definition, and the area to which it is applied. 

2.2 The Compound Event as a Serial System 

Suppose that the i-th patient is exposed to the occurrence of k different events, but  it is enough for 

at least one of them (r=1) to conclude that the composite event has occurred or been diagnosed during 

the follow-up period [0, δi), where δi is the maximum time of observation for the i-th patient. The 

patient survives if he/she recovers from each of the k different events. Let 𝐹𝑇
𝑆 be the probability that 

the compound event occurs under a series system, 𝐹𝑇
𝑆 = P[⋃ 𝑇𝑘 ≤ 𝑡𝑘

𝐾
𝑘=1 ] which implies that the 

probability of surviving the occurrence of the k events is given by 

 
 𝑺∩𝑻(𝒕) = 𝐏[𝑻 > 𝒕] = 𝐏[⋂ 𝑻𝒌 > 𝒕𝒌

𝑲
𝒌=𝟏 ] .                                              (1) 

 

If the terms Tk are mutually independent, then 𝑆∩𝑇(𝑡) = P[𝑇 > 𝑡] = ∏ 𝑆𝑘(𝑡𝑘)𝐾
𝑘=1 . If 

T=min{T1,T2,…,Tk}, then 𝑆𝑇(𝑡) = P[𝑇 > 𝑡] = ∏ 𝑆𝑘(𝑡)𝐾
𝑘=1 . If the random variables T1, …, Tk are 

identically distributed, then Sk(t)=S(t), ∀k, so that 𝑆𝑇(𝑡) = [𝑆(𝑡)]𝑘. However, if the terms Tk are 

mutually dependent, that is, a dependence structure between the instants in which the different events 

occur is described, then the following cases can be considered based on the copula functions (Nelsen, 

2006) and from (1): 

a) For r=K=2, the copula survival function is  

 

𝑆∩𝑇(𝑡) = ∑ 𝑆𝑘(𝑡𝑘) − (𝐾 − 1) + C𝜃(⋂ (1 − 𝑆𝑘(𝑡𝑘))𝐾
𝑘=1 ),𝐾

k=1                                             (2)  

 

where Cθ is the copula function that describes the degree of dependence among the failure times Tk.  

b) For r=K>2, it is not a simple generalization of (2) based on the properties of copula functions 

explained in Nelsen (2006), Úbeda (2001), and Peña (2018). 

 

2.3 The MCFR ̅E Function 

The MCFR ̅E function is the mean cumulative function of non-recurring events of different 

types experienced by the i-th patient during his/her follow-up period [0,δi). At each instant of time 

Tik, the individual accumulates events and generates an accumulated "history" of events of 

different types (FAHD) whose function is given by 𝑌𝑖
∗(𝑡) {0,1, … , 𝐾𝑖}. 

Let 𝑦𝑖𝑘
∗ (t) be the number of times each event occurs for the i-th patient during the instant of 

time t. Since they are non-recurring events of different types, each event will be observed only 

once, which implies that 𝑦𝑖𝑘
∗ (t)=1, ∀i,k. Then, ∑ 𝑦𝑖𝑘

∗ (𝑡) = 𝑌𝑖
∗(𝑡)𝐾𝑖

𝑘=1 . Each function 𝑦𝑖
∗(t) is the 

"value" of each statistical unit; graphically, it takes the form of a "ladder", where each step is a 

different event ek occurred at most at time δi. 

For a population of failure times of N patients Tik, the FAHD for each patient could include 

all the k different event types, a subset r of events of different types with r < k, or just one event 

type, which would lead to the conclusion that the i-th patient under observation has experienced 

the compound event. The structure of the MCFR ̅E function looks like the MCF function, but the 

latter is for recurrent events of the same type, as discussed in Nelson (2003). The graphical 

representation of the FAHD function for the i-th individual is shown in Figure 1.  

 

Figure 1. Cumulative history function for events of different types experienced by the i-th patient. 
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Since it is a serial system, the occurrence of at least one event of the form ek during the follow-

up period of the i-th patient is enough to conclude that the compound event has occurred. Let 

M*(t) be the MCFR ̅E function defined as the mean cumulative number of events of different 

types experienced by each patient, thus 𝑀∗(𝑡) =
1

𝑁
(𝑌1

∗(𝑡), 𝑌2
∗(𝑡), … , 𝑌𝑁

∗(𝑡)). As in the MCF 

function, the statistical model for a population of N units is the FAHD (Peña, 2018). Thus, the 

model is represented by a population of N curves (see Figure 2). 

 

 

Figure 2. Mean cumulative function of non-recurring events of different types (MCFR ̅E). 

 

Based on Figure 2, at each instant of time tl=t the values of each FAHD may have different 

probability distributions with mean M*(t) (dashed line). As for the MCF function for a very large 

population of values, this distribution is continuous with the same characteristics of a continuous 

density function in the sense that Y*(t), understood as a stochastic process, converges towards a 

Gaussian process according to the Central Limit Theorem. Thus, the derivative ∂⁄(∂t M*(t)=m*(t)) 

is assumed to exist and represents the instantaneous population rate of occurrence of events where 

at least one is of a different type because it depends on the instant of time in which an event is 

experienced. The function m*(t) and the "failure rate" λ(t) related to the distribution of the lifetime 

of a patient for a terminal event are different. In this framework, m*(t) measures the risk of 

experiencing different non-terminal events, and λ(t) is the risk of failure function inversely related 

to the survival function for a given time. Due to the characteristic of non-terminal events, m*(t) is 

a function that allows the patient to be observed several times during the follow-up period [0,δi), 

while for the function λ(t) the patient is observed only once when the event of interest occurs. 

The i-th patient is exposed to experiencing Ki different events at most, such that G is the subset 

of events that constitute the compound event G={1, 2, …, Ki }. If G= 1, the occurrence of at least 

one out of G possible events a patient can experience generates a compound event; thus, there are 

(𝐾𝑖
1

) possibilities of observing this compound event. If G= 2, the occurrence of at least two events 

is the compound event. In general, if G=g, the occurrence of at least g events generates the 

compound event, but if G=Ki the occurrence of all the different events generates the compound 

event. Consequently, each subset g of events is an MCFR ̅E function, denoted by 𝑀𝑔
∗(𝑡). At time 

t for the i-th patient, there is a mean cumulative number of events of different types for the N 

population values of the form 𝑌𝑖𝑔
∗ (𝑡), which implies that 𝑀𝑔

∗(𝑡)= 𝐸𝑖{𝑌𝑖𝑔
∗ (𝑡)}, being the classical 

arithmetic mean �̂�𝑔
∗(𝑡) = �̅�𝑖𝑔

∗ (𝑡) =
1

𝑁
∑ 𝑌𝑖𝑔

∗ (𝑡)𝑁
𝑖=1  an estimator of 𝑀𝑔

∗(𝑡). To estimate 𝑀𝑔
∗(𝑡) in each 

t, the times where the occurrence of an event k was observed are ordered in increasing magnitude, 

along with the instants of time where the occurrence of some event was not observed, that is, the 

censored times. Assume there are L failure times, t0=0 <t1<⋯<tl<⋯<tL. Then, in each t(l) there 

exists a given number of patients at risk of experiencing a new event of a different type, denoted 

as Y*(t(l)). If t(l) is censored, then Y*(t(l))=N-1; otherwise, Y*(t(l))=N. For each instant of time 

t(l), 𝑌𝑘
∗(𝑡(𝑙)) denotes the number of times a type k event occurred, which implies that  

𝑚𝑘
∗ (𝑡) = 𝑌𝑘

∗(𝑡) 𝑌∗⁄ (𝑡), where 𝑚𝑘
∗ (t) is the average rate of patients who experienced the event k at 

the instant of time t(l). Therefore, the sampled value of 𝑀𝑘
∗(𝑡) at each t(l) is obtained by adding 

the preceding increments of 𝑚𝑘
∗ (𝑡), �̂�𝑘

∗(𝑡) = ∑ 𝑚𝑘
∗ (𝑡).{𝑡(𝑙)≤𝑡}      

If the population of patients is exposed to the occurrence of K events of different types, then 

the population has a mean K-variant curve given by [�̂�1
∗(𝑡), �̂�2

∗(𝑡), … , �̂�𝑘
∗(𝑡), … , �̂�𝐾

∗ (𝑡)]. If the 
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compound event G is made up of g events of different types, then �̂�𝐺
∗ (𝑡) with G ≤ K consists of 

the sum of these functions of each event g, in other words, �̂�𝐺
∗ (𝑡)=∑ 𝑀𝑔

∗(𝑡)𝑔∈𝐺 . Peña et al. (2018) 

show that the marginal survival probability for each subset g of k events is 𝑆𝑇(𝑡) =

exp (−𝑀𝑔
∗(𝑡)) = exp(− ∑ 𝑀𝑘

∗(𝑡)𝑘∈𝐺 ). Furthermore, if the failure times for each event k are 

independent, ST(t) coincides with the nonparametric Kaplan-Meier estimator, SKM(t). Therefore, 

the marginal survival functions for the different events k are given by 

 

𝑆𝑘(𝑡𝑘) = exp(−𝑀𝑘
∗(𝑡𝑘)).                                                                                                     (3) 

 

2.4 Proposed Model from the Copula Functions of the Archimedean Family  

To each set of failure times Tk, corresponds a marginal survival function Sk(t) given by (4), 

introduced next. Although each Tk can correspond to a parametric distribution function, for 

example, exponential or Weibull, the joint fit between Tk and Tj with k≠j does not necessarily 

remain the same. According to the functional form of the dependence structure between Tk and Tj, 

not necessarily linear, a particular copula will adjust.  The random behavior of the marginal 

function does not imply that it is the same for the multivariate survival function, hence the use of 

the non-parametric survival function (4) as the marginal function of the proposed model. If the 

failure times of events of different types are associated, one way to deal with the problem is 

through copula functions, since they have the property of connecting marginal survival functions. 

The degree of association between failure times, θ, is measured through Kendall's tau coefficient 

as a measure of the dependence among copula functions (Nelsen, 2006). 

For K=G=2, each patient is exposed to the occurrence of two different events, but the 

occurrence of the compound event depends on each patient experiencing at least one. Let Tik with 

i=1, 2, …, N and k=1, 2, be the failure times of both events for the i-th patient. According to Nelsen 

(2006) and Genest & Mackay (1986), if (U1, U2)' is a bivariate random variable with standard 

uniform marginals [0,1], the copula function is defined as C(𝑢1, 𝑢2) = P[𝑈1  ≤  𝑢1, 𝑈2  ≤  𝑢2]. 

The copula function that fits the dependence structure between the random variables T1 and 

T2 cannot be chosen arbitrarily. In this paper, we only consider the cases where the "best" fit is 

given by copula functions of the Archimedean family with a strict generator and that share certain 

characteristics with the survival functions as a function of the dependence structure described 

between the Tk terms. According to Nelsen (2006), for a continuous, decreasing, and convex 

function ϕ(u,θ) such that ϕ:(0,1]→[0,∞) with ϕ(1,θ)=0 as a strict generator, the Archimedean 

function copula is written as C𝜃(𝑢1, 𝑢2) = ϕ𝜃
−1(ϕ(𝑢1, 𝜃) + ϕ(𝑢2, 𝜃)). 

Let T1 and T2 be non-negative random variables with survival functions S1(t1) and S2(t2), then 

U1=S1(T1) and U2=S2(T2). By the Integral Transformation Theorem, it follows that Uk~U(0,1), 

with k=1,2, which defines the bivariate survival distribution function of (U1, U2)' through a copula 

function to obtain the bivariate joint survival function of (T1, T2)', that is, the proposed model. The 

different ways of expressing the proposed survival model using the Archimedean copula functions 

with a strict generator (Peña, 2018) based on the dependence structure described between the 

random variables with uniform distribution [0,1] are shown next: 

Bivariate survival model based on the Clayton copula: 

 

𝑆12(𝑡1, 𝑡2) = ∑ 𝑆𝑘(𝑡𝑘) − 1 + {(∑ (1 − 𝑆𝑘(𝑡𝑘))2
𝑘=1 )

−𝜃
− 1}

−
1

𝜃
.2

𝑘=1    (4) 

 

Bivariate survival model based on the Gumbel-Hougaard copula: 

 

𝑆12(𝑡1, 𝑡2) = ∑ 𝑆𝑘(𝑡𝑘) − 1 + 𝑒𝑥𝑝 [− (∑ (− 𝑙𝑛(1 − 𝑆𝑘(𝑡𝑘)))
𝜃2

𝑘=1 )

1

𝜃
] .2

𝑘=1         (5) 

 

Bivariate survival model based on the Frank copula: 



    Brazilian Journal of Biometrics       55 

 

𝑆12(𝑡1, 𝑡2) = ∑ 𝑆𝑘(𝑡𝑘) − 1 −
1

𝜃
𝑙𝑛 [1 +

∏ (𝑒
−𝜃(1−𝑆𝑘(𝑡𝑘))

)2
𝑘=1

𝑒−𝜃−1
] .2

𝑘=1               (6) 

 

Bivariate survival model based on Joe copula: 

𝑆12(𝑡1, 𝑡2) = ∑ 𝑆𝑘(𝑡𝑘) − [∑ 𝑆𝑘
𝜃(𝑡𝑘) − (∏ 𝑆𝑘(𝑡𝑘)2

𝑘=1 )𝜃2
𝑘=1 ]

1

𝜃.2
𝑘=1     (7) 

 

where each marginal Sk(tk) in each model is given by (3). 

 

3. Results and Discussion 

We consider a cohort of 115 patients with positive diagnoses of HIV and hepatitis B infection, 

followed every six months from January 2007 to December 2013. For each patient, we recorded both 

personal and clinical information regarding the occurrence of one or more events of different types at 

the time of consultation, which could generate another event of greater clinical importance, such as 

AIDS. The objective was to measure a patient´s probability of survival based on the occurrence of two 

events of different types recorded at different moments during their follow-up period. 

HIV is an infection that attacks and destroys the immune system, mainly lymphocytes TCD4+ and 

TCD8+ as the plasma viral load (PVL) increases. The biomarkers TCD4+ and CVP are widely used 

for the evaluation of the progression of HIV infection. This infection goes through different clinical 

stages, the most serious being AIDS, characterized by profound immunosuppression. In this study, the 

clinical structure of the composed event HIV was defined based on the occurrence of two events: 

TCD+4<200 cells/mm3 (here defined as event 1) and/or CVP>100,000 (here defined as event 2).  The 

occurrence of these events does not have a particular order, but the presence of at least one of them 

generates the composite event of AIDS. The CVP for each patient was measured using the polymerase 

chain reaction (PCR) technique, and the count of TCD4+ lymphocytes was measured by flow 

cytometry (Timaure, 2017).  

 

3.1 Description of the Failure Times for Both Events  

The observation time in which one or no event occurred is equivalent to the age of the patient at 

the moment of the first consultation. The failure times of patients who did not experience both events 

(patients who survived the AIDS event) are censored to the right. If, at the time of consultation, the 

patient has experienced at least one of the events (1, 2, or both), his failure time is the time of occurrence 

of the AIDS event. For the statistical analysis, we first determine the univariate probability distribution 

that better fits the failure times of each event before fitting the copula function. In this case, the best fit 

for the occurrence times of each event is the Gamma probability distribution with estimated parameters 

(0.39, 16.18) and (0.45, 20.68), which points to the Gumbel-Hougaard copula as the best fit of the 

copula function. Figure 3 shows the positive dependence structure between both instants of time 

registered for each patient. The red dots on the scatter plot represent the occurrence of the compound 

event AIDS, while the blue dots indicate the censored events. 

 

Figure 3. Dependence structure between failure times of events 1 and 2 in each patient. 
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When the patient experiences one event, the occurrence of the other is almost immediate, even 

though the dependence structure is not completely linear in both the first moments and the later 

ones. A kind of curve is observed at the points that indicate the occurrence of the composite event 

of AIDS (red dots). In this case, Kendall's tau correlation coefficient is equal to 0.83, indicating a 

strong relationship between both failure times. 

 

3.2 Adjustment of the Copula Function for Failure Times of both Events and 
Estimation of the Probability of Bivariate Survival.   

The BiCopSelect function from the VineCopula library of the R package version 4.0.3 

suggests that the Gumbel-Hougaard copula function fits the best (p-value = 0.8937), which implies 

that the bivariate survival model for these data is given by (5) presented above (Genest et al., 

2013).  Figure 4 shows the estimated bivariate survival curve identified by the proposed model 

(blue line). If the failure times of each type of event are independent, the Kaplan-Meier estimator 

is a good option to estimate the probability of survival. However, the probability of survival (red 

line) would be underestimated if the dependence between the two failure times was ignored. If the 

failure times were independent, both survival curves would coincide. As can be seen, the survival 

curve obtained from the proposed model is above the one obtained using the Kaplan-Meier model, 

showing the effect of the dependence between failure times. In addition, by considering the 

existing dependence between the failure times, a better survival prognosis is obtained for the HIV 

patients in the sample. For young patients under 30 years of age, the survival prognosis using both 

models is equivalent, but a better survival prognosis is obtained from the proposed model as the 

patient gets older; for patients older than 60 years, the probability of survival tends to stabilize 

above 40%. Table 1 summarizes some survival probabilities estimated by both models, given that 

the composite AIDS event occurred in 45% of the patients in our sample. 

 

 
Figure 4. Estimated survival functions for dependent failure times (blue curve) versus independent failure times (red curve) for 

events 1 and 2. 

 
Table 1. Estimated survival function using the Kaplan-Meier model (KM) and the proposed model (PM) 

Model 
Value of tk 

<25 35 45 55 65 75 

KM 1.0000 0.8508 0.6133 0.4653 0.2390 0.2390 

PM 1.0000 0.8809 0.7176 0.6225 0.4445 0.4445 

Note: Estimated probabilities of survival based on a sample of 115 patients with a positive diagnosis of HIV and hepatitis 

B infection observed during the period 2007- 2013. 

 

Based on these results, the estimated probability of survival of a 35-year-old patient is 0.8809, 

which larger compared to the one estimated by the Kaplan-Meier model. The older the patient, 

the lower the probability of survival, always higher in our model; after 65 years of age, it tends to 

stabilize at 0.4445. These results agree with the structure of the data set, indicating the failure time 

for each individual corresponding to each type of event, as well as the censored data for each event 

and the composite event. 
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4. Conclusions 

This paper uses a bivariate survival model based on the copula functions of the Archimedean 

family to analyze the occurrence of two events of different types in the same patient, considering 

the possible dependence between failure times. Copula functions can capture the true dependency 

structure between two or more continuous random variables. Dependence structures with a 

positive, negative, or no trend are analyzed, which are the usual functional forms shown by the 

failure times of two events of different types, and represent how each patient experiences at least 

one event of a different type. These structures depict how each patient experiences at least one 

event of a different type. Either the greatest dependence may occur at the beginning during the 

first moments and considerably decrease in the last ones, or the greatest dependence may be 

observed during the last moments, or at the central failure times with a very low degree of 

dependence towards the extremes.  

If the trend in the degree of dependence is positive and almost perfect, it can be concluded 

that the occurrence of one event produces almost immediately the occurrence of the other event; 

if it is negative and almost perfect, the early occurrence of one event delays the occurrence of the 

other. Hence the use of the copula functions of the Archimedean family to generate the proposed 

model. An important property of the proposed model is that, if failure times are independent, it is 

simplified to the copula function of the product, which coincides with the non-parametric Kaplan-

Meier estimator. 

If the patient experiences several non-recurrent events of different types during his/her follow-

up period [0, δi), a subset of them may have the property of generating the composite event AIDS, 

whose occurrence depends on the presence of at least one of two possible conditions of this 

pathology. Thus, the proposed survival function yielded the best survival prognosis conditioned 

on the dependence structure of the events that produced the composite one. When compared with 

a classic model such as Kaplan-Meier, we determined that both sets of failure times considered in 

this case were dependent. If both the Kaplan-Meier survival curve and the proposed survival curve 

coincide, it is possible to conclude that the failure times of the different types of events are 

independent; otherwise, the curves would show different survival prognoses due to the 

dependence effect between the times of failure of events of different types. Therefore, through the 

proposed bivariate survival model, it is possible to capture the true dependence structure that exists 

between the failure times of the different types of non-recurring events that generate the composite 

event. Furthermore, when considering the occurrence of several events on the same individual 

during different instants of time, the best survival prognosis is not given by the highest probability 

of survival that a model can give us, but by the best structure of dependence that is captured 

between the failure times of the different types of events. 

As for the selection of the copula function, which is part of the argument of the proposed 

bivariate survival function, it is based on several factors, such as the degree of dependence 

between the failure times of each type of event, the dependence structure described between them, 

and the marginal functions that are part of their structure. In this way, the probability distribution 

is obtained based on a particular copula function that finally constitutes the proposed model to 

analyze probabilities corresponding to dependent random variables. 
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