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Abstract
The pear of the Pyrus genus is the third most consumed fruit in Brazil, however, internal production
is low and most demand is obtained through imports. Brazil has favorable conditions for its cultivation
and one of its main economic sectors is agriculture, being responsible for generating a large number of
jobs and income for the country. In this sense, studies related to this fruit can provide information and
encourage its production. Using non-linear models, it is possible to identify growth patterns such as
fruit length and diameter, which can help determine the ideal harvest point. Therefore, the goal of this
article was to compare the Logistic and Gompertz non-linear models in describing the growth curves in
diameter and length of the Asian pear tree using the Bayesian approach. The results indicated the Logistic
model as the best to describe these two variables and provided asymptotic averages of 70.0607 mm. and
79.706 mm. for length and diameter, respectively.

Keywords: bayesian inference; Gompertz non-linear model; leave-one-out cross-validation; Lo-
gistic non-linear model; Monte Carlo Hamiltonian; residuals analysis; rstan.

1. Introduction
Including more than 20 different species, the pear of the Pyrus genus is the third most consumed

fruit in Brazil, after apple and peach. Among them, four species with edible fruits stand out in
commercial cultivation: Japanese pear (P. pyrifolia Nakai), European pear (P. communis L.) and
Chinese pear (P. bretschneideri Rehd and P. ussuriensis Maxim.) (Jiang et al., 2009; Lombardi et al.,
2000).

The biggest producer of pears in the world is China, corresponding to 67.3% of its world pro-
duction. Its fruit belongs to temperate climate fruit, so the south of Brazil has favorable soil and
climate conditions for its cultivation, growth and productivity, concentrating about 98% of na-
tional production. Although very consumed in Brazil, internal production corresponds to a small
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portion of its demand, with the remainder being imported mainly from countries such as Argentina
and Chile. The cultivated regions of Brazil have similar environmental conditions to these countries,
in addition to having adequate technological and storage infrastructure, evidencing their potential
to increase their productivity (FAO, 2017; Lopes et al., 2011; Pasa et al., 2015; Mello, 2013; IBGE,
2019; Rufato et al., 2021).

In addition to having favorable production conditions, one of the main economic sectors in
Brazil, is agriculture, which is responsible for a great generation of jobs and income to the country.
Fruit growing is prominent in this sector, providing the country with the third place in the world
in the production of dried fruits, thus, imports may represent a lesser development in this sector.
(KIST, 2018). Among the reasons for the low production of pear trees in Brazil, we can mention
the deficiency of adequate rootstocks, excessive vegetative growth, management techniques and
also fertilization (Brunetto et al., 2015b; Brunetto et al., 2015a; Machado et al., 2015; Carra et al.,
2021; Rufato et al., 2021). Other factors such as the time of harvest should also be considered in
studies to provide information and encourage production. Often the point of harvest is identified
subjectively, that is, without using a consensual standard, which can cause post-harvest damage
if sizes and quality standards are not met for commercialization (Ribeiro et al., 2017; Cavalini et
al., 2006). Some chemical, physical and physiological methods can be considered to establish the
ideal point. Among these, growth patterns such as fruit length and diameter can help determine
the appropriate harvest point, considering whether the fruits can complete their maturation under
refrigeration, or if they are harvested ripe and ready for immediate consumption, as is the case with
the Asian pear (Nakasu et al., 2007; Fioravanço & Antoniolli, 2016). The study of growth patterns can
be done through non-linear models. The growth of a plant or an animal is an inherently non-linear
biological process, that is, they are usually faster in their initial phase, decreasing speed later and
tending to stability in the adult phase, whose graphical representation gives rise to a sigmoid curve,
which suggests the term growth curve. In this sense, non-linear regression models are generally
adequate to describe growth curves, as they present parameters with biological interpretation, which
allow a greater understanding of the growth process, such as asymptotic length or diameter and
growth velocity (Prado et al., 2013).

The literature suggests numerous non-linear regression models to describe growth curves: Lo-
gistic, Gompertz, Brody, Von Bertalanffy and Weibull, among others. The non-linear Gompertz
and Logistic models were fitted with satisfactory results to describe the growth of green dwarf co-
conut fruits (Prado et al., 2013), pear fruits (Ribeiro et al., 2017), coffee fruit (Fernandes et al., 2014),
Palmer mango fruit (Dias et al., 2014) and pequi fruit (Ribeiro et al., 2018). Note that the other
models mentioned above do not receive as much attention in the context of fruit growth, as some of
their characteristics may not be attractive for this purpose (Santos et al., 2019; Fernandes et al., 2019).

The parameters of these models can be estimated by several methods, classical or Bayesian. In the
parametric Bayesian methodology, the information from the sample data, described by the likeli-
hood function, is combined with the researcher’s prior knowledge regarding the parameters, which
is described by the distribution, thus generating a joint distribution of the parameters using Bayes’
theorem. From the distribution, it is possible to obtain statistical summaries of interest of the param-
eters, such as mean, mode and median, as well as intervals with a given probability of occurrence of
the true value of the parameter. (Guedes et al., 2005; Paulino et al., 2003). The aim of this paper is to
compare the non-linear Logistic and Gompertz fitted models in the description of the diameter and
length growth curves of the Asian pear tree (Shinseiki cultivar) through the Bayesian approach.

2. Material and methods
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2.1 Data set
The experiment was carried out in a commercial orchard in the city of Canguçu, in the state

of Rio Grande do Sul, Brazil, from September 15th, 1997 to February 3rd, 1998. 10 plants, with
five flowers per plant, were marked, in the branches of the external and median region of the pear
trees. At 14-day intervals, 20 fruits were collected among the 10 marked plants (two per plant), and
the diameter (mm) and length (mm) measurement was evaluated using a digital caliper. In addition
to these variables, other physicochemical growth measurements were also taken in the laboratory:
fresh matter weight, dry matter weight, pulp firmness, total soluble solids and total titratable acidity.
For the variables diameter and length, considered in this study, 11 evaluations were performed in
total.

2.2 Non-linear models
The nonlinear regression model, according to Seber & Wild (2003), can be defined as follows:

yi = f (xi,β) + ϵi, i = 1, . . . n,

where yi is the response variable, f (xi,β) is a nonlinear function, with known form and that depends
on the explanatory variable xi and the vector of unknown parameters β, and ϵi is the assumed
independent and identically distributed experimental error of a normal distribution with mean 0

and variance σ2, that is, ϵi
iid∼ N(0,σ2). To describe the growth of diameter and length, the non-

linear Logistic and Gompertz models were used, respectively given by:

yi =
β1

1 + exp
{
β2–xi
β3

} + ϵi (1)

yi = β1 exp{exp{–β2(xi – β3)}} + ϵi for i = 1, . . . , n. (2)

where yi is the length or diameter of the fruit in mm.; xi is the time in days; β1 > 0 represents the
horizontal asymptote, i.e. the point of stabilization of growth in length or diameter; β2 > 0 does not
present a direct biological interpretation, being a location parameter and is related to the inflection
point of the curve; β3 ∈ R. is the rate at which the length or diameter reaches its asymptotic value

and ϵi
iid∼ N(0,σ2).

2.3 Bayesian inference
The uncertainty regarding the unknown quantity θ is modeled by the distribution f (θ). This

distribution represents the knowledge about the possible values of the unknown parameters under
study before the data are observed, should include all plausible values for the same and should reflect
the knowledge that the researcher has about the parameter under study (Gelman et al., 1995). The
likelihood function L(θ) can be seen as the representation of what the data has to tell us about the
parameter θ, updating your knowledge.

The inference about the parameters is performed through the distribution of the parameters
π(θ|Data), which is obtained using Bayes’ theorem, given the likelihood and a distribution, as fol-
lows:

π(θ|Data) =
L(θ)π(θ)
π(Data)

=
L(θ)π(θ)∫

θ∈Θ L(θ)π(θ)dθ
,

where π(θ|Data) is the joint posterior distribution of the vector of parameters given the data; L(θ) is
the likelihood function; π(θ) is the joint prior distribution for the parameter vector θ and π(Data) is
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the marginal distribution of y. As 1
π(Data) does not depend on θ, it results in a normalizing constant

of π(θ|Data), then we have:
π(θ|Data) ∝ L(θ)π(θ).

Samples of the joint posterior distribution can be obtained using Markov chains that have the
posterior distribution as limiting distribution, and which can be obtained using, for example, the
Gibbs sampler (Casella & George, 1992) or the Metropolis-Hastings algorithm (Hastings, 1970).
From these samples, a summary could be obtained for each parameter of interest and information
such as the mean of the posterior distribution, which represents the expected value of θ given the
data, or the mode, which represents the most likely value.

For models (1) and (2), assuming that the error follows a normal distribution, it implies that

yi
iid∼ N(µi,σ2), then for n independent observations (y1, x1), . . . , (yn, xn), the likelihood function

can be written as

L(θ) = (2πσ2)–n/2exp

[
–

1
2σ2

n∑
i=1

(xi – µi)2
]

(3)

where µi = β1

1+exp
{

β2–xi
β3

} for the Logistic model and µi = β1 exp{exp{–β2(xi – β3)}} for the Gom-

pertz model, with θ = (β1,β2,β3,σ2)⊤.
For both models, considering its likelihood functions (3), the joint posterior density of θ can be

expressed as

π(θ|Data) ∝ L(θ)π(β1)π(β2)π(β3)π(σ2) (4)

where β1 ∼ Inverse Gamma(αβ1 ,γβ1 ), β2 ∼ Normal(µβ2 ,σ2
β2

), β3 ∼ Inverse Gamma
(αβ3 ,γβ3 ), and σ2 ∼ Inverse Gamma(ασ2 ,γσ2 ) are the independent and non-informative prior
distributions to the parameters, following the parameter space given in Equation 1 and 2. The quan-
tities αβ1 , γβ1 , µβ2 , σ2

β2
, αβ3 , γβ3 , ασ2 , γσ2 are called hyperparameters of a priori distributions,

not necessarily the same in both models.
The posteriori (4) is analytically intractable, therefore, we used the Monte Carlo Hamiltonian

algorithm from the rstan package in R software (R Core Team, 2023). Samples of the posterior
distribution of model parameters were obtained from 3 chains and 11,000 iterations each, where
the initial 1,000 values were discarded (burnin), so that the chains are not influenced by them. In
addition, we considered an interval equal to 10 between each iteration (thin), in order to obtain an
approximately independent subsample. The R code is described in the Appendix 1.

2.4 Convergence and model checking
For the convergence analysis of the chains, we use the R̂ convergence metric and diagnostic

plots of the MCMC sampler for each parameter. Lack of divergences and R̂ close to 1 indicate no
problem for each individual posterior fit (recommended cut-off is 1.05), see for instance, Vehtari
et al. (2021). To verify the adequacy of the model, residual analysis was performed using plots of
standardized residuals vs. predicted values and normal probability plots, these being given by:

r̂i =
yi – µ̂i√
var(µ̂i)

where µ̂i are the predicted values and
√

var(µ̂i) is the estimated standard deviation.
We compared the predictive accuracy of the models by the expected log pointwise predictive

density (elpd) measure. In general, cross-validation is used to approximate the estimation of the elpd.
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Here we use the leave-one-out cross-validation (LOO) method, calculated using Pareto-smoothed
importance sampling (PSIS), a procedure for regularizing importance weights (PSIS-LOO), more
robust in finite cases with weak priors or influential observations and with low computational cost.
The method called elpdloo proceeds as follows: an observation is left out and the model is estimated
again without it, the process is repeated for all observations in the set (see Vehtari et al. (2017)). This
amount is obtained using the loo function of the LOO package in R software.

3. Results and discussion
In this section, we present the results of the Bayesian analysis. Tables 1 and 2 show some sum-

maries for each parameter: means, standard errors (SE), standard deviations (SD), 95% credibility
intervals (CI) and R̂ for the Logistic and Gompertz models for length and diameter. The values of
elpdloo and the metric R̂ could be seen in the tables. For both variables, the Logistics model obtained
the larger elpdloo values, indicating that it may be the most adequate for these data. The values of
R̂ are very close to 1, indicating a good convergence of the chains, which can also be verified by
the Figures 1 and 3 for the length and 2 and 4 for the diameter. It is noted in the figures that both
chairs obtained stationary behavior, indicating a good convergence. Additional chain plots can be
seen in the Appendix 2.

Table 1. Means, standard errors (SE), standard deviations (SD), 95% credibility intervals (CI) and R̂ for each parameter and
LOOIC for the Logistic and Gompertz models for the length of the pears

Model Parameter Mean SE SD 95% CI R̂
Logistic β1 70.0611 0.0103 0.5674 [68.9675;71.2003] 0.9993

β2 51.9670 0.0135 0.7307 [50.5087;53.4303] 0.9992
β3 25.0789 0.0131 0.7133 [23.6807;26.4926] 0.9995
σ 3.2717 0.0030 0.1590 [2.9703;3.6015] 0.9998

elpdloo -569.4665

Gompertz β1 73.6704 0.0150 0.8467 [72.0802;75.3569] 1.0007
β2 0.0258 0.0000 0.0009 [0.0241;0.0276] 1.0015
β3 38.6942 0.0133 0.7400 [37.2746;40.1919] 1.0011
σ 3.4504 0.0029 0.1704 [3.1403;3.8072] 0.9994

elpdloo -581.5332
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Table 2. Means, standard errors (SE), standard deviations (SD), 95% credibility intervals (CI) and R̂ for each parameter and
LOOIC for the Logistic and Gompertz models for the diameter of the pears

Model Parameter Mean SE SD 95% CI R̂
Logistic β1 79.7195 0.0080 0.4186 [78.9163;80.5253] 1.0019

β2 55.1450 0.0089 0.4538 [54.2418;56.0326] 1.0010
β3 20.1597 0.0081 0.4217 [19.3463;21.0198] 1.0005
σ 2.9020 0.0026 0.1428 [2.6423;3.2075] 0.9993

elpdloo -542.1082

Gompertz β1 83.1572 0.0115 0.6455 [81.8841;84.4472] 0.9992
β2 0.0317 0.0000 0.0008 [0.0302;0.0334] 0.9999
β3 43.5778 0.0091 0.4946 [42.6045;44.5360] 0.9992
σ 3.3057 0.0030 0.1594 [3.0117;3.6299] 0.9991

elpdloo -571.6466
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Figure 1. Chain plots of the parameters of the Logistic non-linear model for the length of the pears.
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Figure 2. Chains plots of the parameters of the Logistic non-linear model for the diameter of the pears.
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Figure 3. Chains plots of the parameters of the Gompertz non-linear model for the length of the pears.
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Figure 4. Chains plots of the parameters of the Gompertz non-linear model for the diameter of the pears.

Figure 5 shows the fitted of the Logistic and Gompertz non-linear model for diameter and length
for the pear dataset. It is notable that both variables show a sigmoid behavior. We can verify that the
length and the diameter of the fruit reach the stabilization of the growth around 125 days. According
to the values of elpdloo we can recommend the Logistic non-linear model. From this model, we can
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verify that the asymptotic average length of the fruit is 70.0607 mm and the diameter is 79.706 mm.
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Figure 5. Fits of the Logistic (red curve) and Gompertz (blue curve) models for pear data: (a) length and (b) diameter.

The adequacy of the Logistics models can be verified through the standardized residuals (Figure
6 and 7). The plots of the residuals versus the observation index, Figures 6a and 7a, reveal that the
residuals have a random behavior within the interval [-3,3], and Figures 6b and 7b indicate that the
residuals approximately follow a distribution standard normal. Therefore the Logistic non-linear
model can be considered suitable for the current data sets.
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Figure 6. Plots of standardized residuals from the Logistic model for the pear length models: (a) Index and (b) Normal
probability plots.
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Figure 7. Plots of standardized residuals for the pear diameter models: (a) Index and (b) Normal probability plots.

4. Conclusions
This article compared the Logistic and Gompertz non-linear models in the description of the

diameter and length growth curves of the Asian pear tree (Shinseiki cultivar) through the Bayesian
approach. The two models obtained good chain convergence considering the two variables under
study, however, the elpdloo criterion indicated the Logistic model as the best. The suitability of this
model was also confirmed by residual analysis. Finally, we could obtain the following results: the
asymptotic average length of the fruit is 70.0607 mm and the diameter is 79.706 mm.
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Appendix 1. RStan code
Logistic non-linear model

Here, we present the RStan code for the Logistic non-linear model

mod_logistic = 'data{
int<lower=0> N;
vector[N] y;
vector[N] x;

}
parameters{

real<lower=0> beta1;
real beta2;
real<lower=0> beta3;
real<lower=0> sigma;

}
transformed parameters{

real mu[N];
for (i in 1:N)

mu[i] = beta1/(1+exp((beta2-x[i])/beta3));
}
model{

beta1 ~ inv_gamma(5, 50);
beta2 ~ normal(0, 1000);
beta3 ~ inv_gamma(5, 50);
sigma ~ inv_gamma(5, 50);
target += normal_lpdf(y | mu, sigma);

}
generated quantities{

real Y_mean[N];
real Y_pred[N];
real log_lik[N];
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for(i in 1:N){
// Posterior parameter distribution of the mean
Y_mean[i] = beta1/(1+exp((beta2-x[i])/beta3));
// Posterior predictive distribution
Y_pred[i] = normal_rng(Y_mean[i], sigma);

}
for (n in 1:N){

log_lik[n] = normal_lpdf(y[n] | Y_mean[n],
sigma);

}
}'

stan(model_code = mod_logistic, data=list(N = length(y), x = x, y = y),
chains = 3,
iter = 11000,
warmup = 1000,
thin = 10,
refresh=0)

Gompertz non-linear model
Here, we present the RStan code for the Gompertz non-linear model

mod_gompertz = 'data{
int<lower=0> N;
vector[N] y;
vector[N] x;

}
parameters{

real<lower=0> beta1;
real<lower=0> beta2;
real<lower=0> beta3;
real<lower=0> sigma;

}
transformed parameters{

real mu[N];
for (i in 1:N)

mu[i] = beta1*exp((-exp(-beta2*(x[i]-beta3))));
}
model{

beta1 ~ inv_gamma(5, 50);
beta2 ~ normal(0, 1000);
beta3 ~ inv_gamma(5, 50);
sigma ~ inv_gamma(5, 50);
y ~ normal(mu, sigma);

}
generated quantities{

real Y_mean[N];
real Y_pred[N];
real log_lik[N];
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for(i in 1:N){
// Posterior parameter distribution of the mean
Y_mean[i] = beta1*exp((-exp(-beta2*(x[i]-beta3))));
// Posterior predictive distribution
Y_pred[i] = normal_rng(Y_mean[i], sigma);

}
for (n in 1:N){

log_lik[n] = normal_lpdf(y[n] | Y_mean[n],
sigma);

}
}'
fit_gomp <- stan(model_code = mod_gompertz, data=list(N = length(y), x = x, y = y),

chains = 3,
iter = 11000,
warmup = 1000,
thin = 10,
refresh=0)

Appendix 2. Chain plots
Here, we present the chain density curves of the parameters of the Logistic and Gompertz non-

linear models for the length and diameter of the pears.
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Figure 8. Chain density curves of the parameters of the Logistic non-linear model for the length of the pears.
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Figure 9. Chain density curves of the parameters of the Logistic non-linear model for the diameter of the pears.
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Figure 10. Chain density curves of the parameters of the Gompertz non-linear model for the length of the pears.
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Figure 11. Chain density curves of the parameters of the Gompertz non-linear model for the diameter of the pears.
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