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Abstract
In the sequential Bayesian approach, the sample size is not fixed before the experiment; it is determined
based on the observations made. The procedure concludes when there is enough information to estimate
the parameters, according to a stopping criterion. A parameter of interest in population genetics is the
proportion obtained from the allele frequency at one or more loci to verify Hardy-Weinberg equilibrium
(HWE). The objective of this study was to assess the occurrence of HWE in a population of piracanjuba
fish (Brycon orbignyanus) by estimating the allele proportion and expected genotype proportions using
a sequential Bayesian approach. Additionally, a comparison was made with frequentist and Bayesian ap-
proaches. Initially, genotypic profiles were analyzed at a microsatellite DNA locus, Bh6, in 49 fish, to
determine the frequency of observed alleles and genotypes at the UFSJ Genetic Resources Laboratory.
Seven allele classes were observed; thus, under the assumption of sampling independence, the likelihood
is multinomial. The estimation of allele and genotype proportions was then carried out using frequentist,
Bayesian, and sequential Bayesian approaches. A uniform prior and a cost of 10–3 were considered. The
estimates from the three approaches were compared, and it was concluded that the sequential approach
proved effective, utilizing only 55.1% of the available data, thereby reducing the sample size and opti-
mizing the procedure. Using a chi-square test at a 5% probability level, it was concluded that the studied
sample is in Hardy-Weinberg equilibrium (p-value: 0.9800245).
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1. Introduction
The sequential sampling is characterized by using samples of variable size; therefore, the sample

size is not fixed before the experiment but is determined based on the observations made. The
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incorporation of Bayesian techniques into sequential sampling allows the use of a priori information
that can optimize the sampling plan and improve parameter estimation (Wald, 1947).

Thus, in the Bayesian sequential approach, the procedure is stopped when sufficient information
is obtained to estimate the desired parameters, according to a stopping criterion that compares the
immediate and expected risks at each sample element. The decision to stop sampling is made when
the immediate risk is lower than the expected risk, and the parameters of interest are estimated
(Berger, 1985).

This approach can be applied in various areas with the aim of reducing the required sample
size for making decisions about parameters. Therefore, it is particularly useful in processes where
sampling is destructive and incurs high financial and/or execution time costs (Schilling & Neubauer,
2017).

In the context of population genetics, the parameters of interest are the proportions obtained
from the frequencies of alleles and genotypes at one or more loci, to check for Hardy-Weinberg
equilibrium (HWE). According to Hartl & Clark (2010), a population is in HWE when the genotype
proportions are distributed as expected based on the occurrence of random mating, a phenomenon
known as panmixia, for a given distribution of allele proportions (genetic diversity). In general, this
equilibrium occurs when allele and genotype proportions remain constant.

However, the process of genetic population description is conducted meticulously, requiring
the visual analysis of one element at a time at each DNA locus. This procedure, besides consuming
considerable time, demands significant resources, making it an exhaustive task. Therefore, the ap-
plication of the Bayesian sequential approach is relevant in the field of population genetics, as it may
result in a reduction of the required sample size to verify Hardy-Weinberg equilibrium, optimizing
the procedure.

In a two-allele gene system, A and a, the proportion of these alleles follows a binomial distribu-
tion. Meanwhile, the proportion of genotypes in a population can be described by a multinomial
distribution with three categories: homozygote AA, heterozygote Aa, and homozygote aa. How-
ever, alleles generally have more than two categories, exhibiting genetic diversity; thus, the allele
proportion is also determined by a multinomial distribution (Rehman et al., 2020).

Thus, the objective of this study was to verify the occurrence of Hardy-Weinberg equilib-
rium in a population of piracanjuba fish (Brycon orbignyanus), an endangered species, by estimating
allele proportions and the expected proportions of genotypes. This was done using a Bayesian se-
quential approach for the multinomial distribution and comparing it with frequentist and Bayesian
approaches.

2. Matherials and Methods
2.1 Multinomial distribution

The multinomial distribution is a discrete probability distribution and a generalization of the bi-
nomial distribution for polytomous response variables, used to estimate the probability of an element
belonging to more than two categories.

According to Casella & Berger (2002), the multinomial distribution is defined by assuming an
experiment whose result is one of the events E1,E2, ...,Ek, with probabilities P[Ei] = pi, where k is
the number of classes of the multinomial distribution. For i = 1, 2, ..., k, 0 ≤ pi ≤ 1, and

∑k
i=1 pi = 1.

LetXi be a random variable that counts the number of occurrences ofEi in n independent repetitions
of this experiment. Then, the random vector (X1,X2, ...,Xk) has a distribution called multinomial,
with parameters p1, p2, ..., pk–1, and n, given by:

fX1,X2,...,Xk (x1, x2, ..., xk) = P[X1 = x1,X2 = x2, ...,Xk = xk] =
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=
n!

x1!x2! · ... · xk!
px1

1 px2
2 · ... · pxkk = n!

k∏
i=1

pxii
xi!

. (1)

where each Xi is a positive integer, p1, p2, ..., pk are population proportions, and
∑k

i=1 xi = n. There
are p1, p2, ..., pk–1 parameters because

∑k
i=1 pi = 1, thus pk = 1 –

∑k–1
i=1 pi.

2.1.1 The Bayesian estimation of parameters for the multinomial distribution
The Dirichlet distribution is the multivariate generalization of the beta distribution, with a non-

negative real vector parameter a. It is a widely used multivariate discrete distribution in the Bayesian
context as the conjugate prior distribution for the multinomial distribution (Paulino et al., 2018).

Let X = (X1, ...,Xk)T be a vector with k components; then, it follows a Dirichlet distribution of
order k ≥ 2 with a parameter vector a = (a1, ..., ak)T , i.e., (Paulino et al., 2018):

(X|a) ∼ Dirichlet(a).

Its probability density function is given by:

fX (x1, ..., xk) =
Γ (a0)∏k
i=1 Γ (ai)

k∏
i=1

pai–1
i , 0 < pi < 1, (2)

where a0 =
∑k

i=1 ai, Γ (t) =
∫∞

0 xt–1e–xdx is the gamma function, and
∑k

i=1 pi = 1. The marginal
distribution is a beta distribution with parameters ai and (a0 – ai) for each i, from which:

E(Xi) =
ai
a0

, Var(Xi) =
ai(a0 – ai)
a2

0(a0 + 1)
, Cov(Xi,Xj) =

–aiaj
a2

0(a0 + 1)
. (3)

If the prior distribution is Dirichlet and the observed variable follows a multinomial distribu-
tion, then the posterior distribution will be another Dirichlet distribution with different parameters.
Therefore, the posterior distribution follows a Dirichlet distribution with parameters:

p|X ∼ Dirichlet(a∗1 = x1 + a1, ..., a∗k = xk + ak).

where X = (x1, ..., xk, a1, ..., ak)T .
Thus, the mean, variance, and covariance of the Dirichlet posterior distribution are given by:

E(p|Xi) =
xi + ai∑k
i=1(xi + ai)

, (4)

Var(p|Xi) =
(xi + ai)

{[∑k
i=1(xi + ai)

]
– (xi + ai)

}
[∑k

i=1(xi + ai)
]2 {[∑k

i=1(xi + ai)
]

+ 1
} , (5)

Cov(p|Xi,Xj) =
–(xi + ai)(xj + aj)[∑k

i=1(xi + ai)
]2 {[∑k

i=1(xi + ai)
]

+ 1
} . (6)
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2.1.2 The Bayesian sequential estimation of parameters for the multinomial distribution
According to Berger (1985), the main idea behind the Bayesian sequential estimation procedure

is that when making each observation one at a time, one should compare the a posteriori Bayesian
risk of making an immediate decision with the expected a posteriori Bayesian risk, which will be
obtained if more observations are taken.

Moreover, the Bayesian sequential rule can also be known as Bayesian learning because the a
posteriori distribution calculated at the current n will be used to update the a priori distribution yet to
be used in the (n + 1)-th evaluation (Berger, 1985).

In this regard, to determine the stopping criterion, it is necessary to calculate these risks for
the multinomial distribution. Lima (2022) established these risks for Dirichlet conjugate priors and
detailed the derivations; for more details, refer to the mentioned work.

To obtain the stopping criterion, a quadratic loss function was considered for the parame-
ter estimate p = (p1, p2, ..., pk)T by p̂ = (p̂1, p̂2, ..., p̂k)T , and it takes the general quadratic form
(p – p̂)TK(p – p̂), where K is a positive definite symmetric I× I matrix of constant loss (Chen, 1988;
Jones, 1976; Owen, 1970).

Thus, using a quadratic loss function, the Bayesian estimator p̂ is the mean of the posteriori dis-
tribution of (x, n), i.e., the mean of the posteriori Dirichlet distribution, given by (4).

The immediate risk, or the stopping risk of making a decision, is given by:

S ((x1, ..., xk), n) = S(x, n) = trace KΣ. (7)

where Σ is the dispersion matrix of the posteriori Dirichlet distribution, having the posteriori vari-
ances on its main diagonal and the posteriori covariances of the Dirichlet distribution in the other
components.

This results in:

S(x, n) =

∑k
i=1 Kii(xi + ai)

(∑k
i=1(xi + ai)

)
–
∑k

i=1
∑k

j=1 Kij(xi + ai)(xj + aj)[∑k
i=1(xi + ai)

]2 {[∑k
i=1(xi + ai)

]
+ 1

} . (8)

Dynamic programming equations were used to find the expected risk, resulting in:

B(x, n) = c + S(x, n)
(

a0 + n
a0 + n + 1

)
. (9)

where c is the cost of sampling one observation.
Therefore, the stopping criterion boils down to comparing the values of immediate and expected

risks for each observation, given by the expressions found in (8) and (9). When the immediate risk is
less than the expected one, i.e., S(x,m) < B(x,m), the sampling stops, and the parameters of interest
are estimated. Otherwise, if S(x,m) > B(x,m), the sampling continues, taking another observation
until a decision can be made.

2.2 Hardy-Weinberg equilibrium
The Hardy-Weinberg equilibrium is one of the main topics studied in population genetics. In

1908, the English mathematician Godfrey Harold Hardy and the German physician Wilhelm Wein-
berg independently and almost simultaneously arrived at the Hardy-Weinberg Equilibrium Law.

To check the HWE, one must calculate the expected proportion of each genotype based on
the allelic proportions p1 and p2, representing the proportion of alleles A and a, respectively, in the
population. Thus, the expected genotypic proportions are estimated from the Hardy-Weinberg
equation, which is given by a quadratic expansion of allelic proportions (Hartl & Clark, 2010):
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(p1 + p2)2 = 1 ⇒ p2
1 + 2p1p2 + p2

2 = 1, (10)

where p2
1 represents the proportion of homozygotes AA, 2p1p2 the proportion of heterozygotes Aa,

and p2
2 the proportion of homozygotes aa.

In the case of a single-gene system with k alleles, k ≥ 2, the probability distribution associated
with genotypes is a multinomial distribution, and it will have k(k+1)

2 classes because the number of
categories/classes of the multinomial distribution of genotypes is given by the combination of the
number of alleles taken 2 by 2, added to the number of alleles, considering that species generally
have a diploid number of chromosomes. i.e.,

Ck,2 + k =
k!

(k – 2)!2!
+ k =

k(k – 1)(k – 2)!
(k – 2)!2!

+ k =
k(k – 1) + 2k

2
=
k2 + k

2
=
k(k + 1)

2
. (11)

The Hardy-Weinberg equation to estimate the expected genotypic proportions when there is
genetic diversity, i.e., when the population has more than two alleles (k ≥ 2), is given by general-
izing the expansion (p1 + p2 + ... + pk)2 = 1 where pn, with n = 1, ..., k, is the proportion of alleles,
resulting in:

p1p1 + p1p2 + ... + p1pk + p2p1 + p2p2 + ... + p2pk + ... + pkp1 + pkp2 + ... + pkpk = 1

p2
1 + 2p1p2 + ... + 2p1pk + p2

2 + ... + 2p2pk + ... + p2
k = 1

Therefore, pij = 2pipj, i, j = 1, ..., k, if i ̸= j, and pij = p2
i , if i = j, where pij are the proportions of

genotypes AiAj, with j ≥ i. This relationship can be written in matrix form, where on the main
diagonal, the expected proportions of homozygous genotypes are, and the rest are the expected
proportions of heterozygous genotypes:


p2

1 2p1p2 · · · 2p1pj
0 p2

2 · · · 2p2pj
...

...
. . .

...
0 0 · · · p2

i

 =


p11 p12 · · · p1j
0 p22 · · · p2j
...

...
. . .

...
0 0 · · · pij

 . (12)

2.3 Application
All the theory of Hardy-Weinberg equilibrium was applied to a dataset of a microsatellite DNA

locus, Bh6, from 49 fish of the species Brycon orbignyanus, commonly known as piracanjuba. These
fish are from the Rio das Mortes basin, São João del-Rei - MG municipality, and are used as breeders
in fish farming, being a threatened species.

Initially, the analysis of genotypic profiles of the microsatellite DNA locus Bh6 from the 49 fish
was performed using polyacrylamide gel electrophoresis to determine the proportions of observed
alleles and genotypes at the Laboratory of Genetic Resources of the Department of Animal Science
at the Federal University of São João del-Rei, São João del-Rei, Minas Gerais (LARGE-DEZOO-
UFSJ).

The allele and genotype proportions were estimated using three approaches: frequentist, Bayesian,
and sequential Bayesian. The sample size for the frequentist and Bayesian approaches was 49 fish.

For the frequentist approach, the proportion of observed genotypes was calculated as follows:
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pij =
nij
n

. (13)

The allele proportion:

pi =
ni + nj
2nij

, (14)

where nij is the observed count in each category i, j = 1, ..., k, j ≥ i, n is the total count, ni is the sum
of counts in each category in row i, and nj is the sum of counts in each category in column j, in a
contingency table with L rows and C columns.

And the expected genotype proportions calculated according to the Hardy-Weinberg equation,
using the allele proportions:

{
pij = p2

i , if i=j
pij = 2pipj, if i̸=j , (15)

where pij are the proportions of genotypes AiAj, and pi are the proportions of alleles, i, j = 1, ..., k
with j ≥ i.

For the Bayesian and sequential Bayesian approaches, a Dirichlet conjugate prior was adopted
with hyperparameters equal to one, thus having as a particular case of the Dirichlet, a uniform prior
distribution, where all values are equally probable, being a non-informative priori.

In the Bayesian approach, allele proportion estimates were calculated by the mean of the Dirich-
let posterior distribution given in (4). The expected genotype proportions were then calculated using
(15).

For the sequential Bayesian approach, a cost of 10–3 was considered, which is constant and
additive in the loss function. This value is associated with the precision of the p values. According
to Bach (2015), the cost value should have a similar order of magnitude as the loss function. This
ensures that the risk function is not exclusively dominated by the cost. By considering the quadratic
loss function, as the loss is the square of a difference between real and estimated proportion values,
which are in the interval [0, 1], the results are always close to zero, and therefore, the cost should
also be close to zero. Thus, the chosen cost value is in line with Bach (2015) and does not dominate
the stopping criterion.

In the sequential Bayesian approach, the procedure stops when the immediate risk is lower
than expected, given by the expressions (8) and (9), obtained through the quadratic loss function.
Thus, the estimates of observed genotypes were calculated by the mean of the Dirichlet a posteriori
distribution, given by (4). With the sample size at which the procedure stopped, allele proportions
were calculated using (14), and from these, expected genotype proportions were calculated using
(15).

The sampling order of the sequential procedure followed the order of the spreadsheet analyses.
Thus, the first fish analyzed from the spreadsheet, the second, and so on. Just for clarification, as this
aspect can affect early or late stopping in relation to the obtained result.

A chi-square test was performed to check whether the locus is in Hardy-Weinberg equilibrium
or not.

The chi-square test is used to verify if the frequency of a certain event observed in a sample
differs significantly from the expected frequency of that event. This quantification is done through
the chi-square statistic, defined as (Bussab & Morettin, 2017):
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χ2
calculated =

∑n
i=1 (observedi – expectedi)

2

expectedi
, (16)

where observed and expected refer to the observed and expected frequencies in each genotypic class.
After calculating the value of χ2

calculated (Equation 16), it is compared with the χ2
tabulated value for

the appropriate degrees of freedom (d.f.) and desired significance level (α). If χ2
calculated ≥ χ2

tabulated,
H0 is rejected; otherwise, H0 is not rejected. The degrees of freedom (d.f.) are calculated as the
number of data classes - number of estimated parameters - 1 (Hartl & Clark, 2010).

Thus, it was tested whether the number of individuals in each genotypic class corresponds to
the expected under the hypothesis that the population is in Hardy-Weinberg equilibrium at a 5%
probability level. The hypotheses are:

{
H0 : The population is in HWE.

H1 : The population is not in HWE.

The estimates from the three approaches were compared by calculating the percentage error,
the correlation between the estimates, and the confidence interval for the differences in estimated
proportions between two approaches.

The Percentage Error (PE) is given by the expression:

PE =
(|pi1 – pi2|) × 100%

pi2
, (17)

where PE is the percentage error in the estimation of the proportion parameter, pi1 is the proportion
parameter estimated by approach 1, pi2 is the proportion parameter estimated by approach 2 to be
compared.

The confidence interval for the difference in proportions is given by:

IC1–α(p) : (p̂1 – p̂2) ± zα
2

√
p̂1 (1 – p̂1)

n1
+
p̂2 (1 – p̂2)

n2
. (18)

3. Results and Discussion
In the utilized dataset, seven allele classes were observed, denoted as k = 1, ..., 7. Thus, assuming

sample independence, the likelihood follows a multinomial distribution. The multinomial distribu-
tion for genotypes has 28 categories, calculated by the expression 11.

The estimation of observed genotype proportions and subsequently the estimation of allele pro-
portions and expected genotype proportions were carried out using the frequentist, Bayesian, and
sequential Bayesian approaches. In the sequential Bayesian approach, the procedure was interrupted,
and the estimate was obtained with a sample size of 27 fish.

In Figure 1 and Table 1, the results of the allele proportion estimates by the three approaches are
presented:
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Figure 1. Allele proportions estimated by the three approaches.

Table 1. Estimates of allele proportions under the three approaches: frequentist (f.), Bayesian (b.), and sequential Bayesian
(s. b.)

Parameter p̂i f. p̂i b. p̂i s. b.

p1 0,031 0,029 0,056
p2 0,112 0,104 0,056
p3 0,510 0,497 0,500
p4 0,031 0,038 0,000
p5 0,245 0,254 0,278
p6 0,031 0,029 0,056
p7 0,041 0,049 0,056

n 49 49 27
Source: Authors (2023).

As the expected genotype proportions are calculated based on allele proportions, given by the
Hardy-Weinberg equation (15), only the allele estimate comparisons were made.

To do this, the Percentage Error (%) between the approaches was calculated pairwise, and also
the confidence interval of the differences in proportions, with a 95% confidence level. The results
are shown in Table 2.

In the PE between estimates by the Bayesian and frequentist approaches, the first approach was
considered Bayesian, and the second one was considered frequentist. In the PE between estimates
by the sequential Bayesian and frequentist approaches, the first approach was considered sequential
Bayesian, and the second one was considered frequentist. Finally, in the PE between estimates by
the sequential Bayesian and Bayesian approaches, the first approach was sequential Bayesian, and
the second one was Bayesian.
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Table 2. Percentage Errors (PE) % and Confidence Intervals (CI) for the differences in proportions among the three ap-
proaches

Parameter PE (f. x b.) % PE (f. x s. b.) % PE (b. x s. b.) % CI95% (f. - b.) CI95% (f. - s. b.) CI95% (b. - s. b.)

p1 5,267 81,481 91,571 [-0,066; 0,069] [-0,124; 0,074] [-0,125; 0,072]
p2 7,345 50,505 46,581 [-0,115; 0,131] [-0,067; 0,180] [-0,073; 0,170]
p3 2,588 2,000 0,604 [-0,185; 0,211] [-0,225; 0,245] [-0,239; 0,232]
p4 24,133 100,000 100,000 [-0,079; 0,065] [-0,018; 0,079] [-0,016; 0,092]
p5 3,717 13,426 9,361 [-0,180; 0,162] [-0,240; 0,175] [-0,232; 0,185]
p6 5,267 81,481 91,571 [-0,066; 0,069] [-0,124; 0,074] [-0,125; 0,072]
p7 20,050 36,111 13,379 [-0,090; 0,074] [-0,117; 0,088] [-0,112; 0,099]

Source: Authors (2023).

It can be observed from Table 2 that the lowest percentage errors were between estimates from
the frequentist and Bayesian approaches. However, when the parameter is larger, the sequential
Bayesian approach is quite effective, as observed in the case of p3 and p5.

Moreover, in Table 2, all confidence intervals for the differences in proportion estimates contain
zero, meaning that the difference in the proportion may be zero, indicating non-significance. This
highlights that the sequential approach was efficient in estimates and utilized only 55.1% of the
available data, optimizing the procedure.

Another point to be highlighted is that, with the Bayesian sequential approach, the sample size
was 27 fish, of which only the presence of 6 alleles was detected. This resulted in the estimate
of p4 being equal to zero. However, the non-estimation of allele 4 is not considered a problem in
population genetics, as it is a rare allele, and therefore, its influence on Hardy-Weinberg equilibrium
is low. This fact can be confirmed by the low occurrence of allele 4 in the total sample of 49
individuals, where it was observed at a low frequency (3%), being present in the last individuals
evaluated in the total sample (43 and 49).

Since allele 4 is a rare allele, even if it is present in the population, its frequency will be low.
Therefore, the frequency of its combinations, i.e., genotypic frequencies, will also be low. This
results in a low impact on the calculation of Hardy-Weinberg equilibrium, which depends only on
the adherence between the observed and expected. Thus, if the observed is rare, then the expected
will also be rare, resulting in little influence on the equilibrium, since estimates of rare alleles, when
present, will be close to zero.

It is also important to note that, in this study, 49 fish were observed for analysis by traditional
(frequentist) methods initially, of which 7 alleles were identified. But by taking a larger number
than 49 fish, it may be possible to identify more rare alleles. Thus, even using other approaches with
a fixed sample size, it is not possible to identify all alleles present in the population. Alleles that are
considered rare, with low frequency, will be less identified. Therefore, the number of alleles cannot
be pre-fixed, as it always depends on the analyzed sample size.

Another point to emphasize is that with the sequential Bayesian approach, the sample size was
27 fish, and with these 27 fish, the presence of only 6 alleles was detected, resulting in the estimate of
p4 being zero. It should be noted that even using another approach, the same thing could happen,
for example, when analyzing more fish, and the presence of more alleles is detected. Therefore, the
number of alleles cannot be predetermined; this quantity will always depend on the analyzed sample
size.

Additionally, the correlation between the estimates was calculated, resulting in 0.9991 between
the frequentist and Bayesian approaches, 0.9826 between the frequentist and sequential Bayesian
approaches, and 0.9852 between the Bayesian and sequential Bayesian approaches. All values are
close to 1, indicating a strong correlation.

Histograms of the posterior distributions of alleles from the sequential Bayesian approach were
constructed using the R software (R Core Team, 2023), presented in Figure 2.
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Figure 2. Histograms of the posterior distributions of alleles from the sequential Bayesian approach.

A chi-square test was conducted at a 5% probability level, with degrees of freedom = 28 – 6 – 1 =
21. It was concluded that the studied sample is in Hardy-Weinberg equilibrium, as the obtained p-
value was 0.9800245, which is greater than 0.05, leading to the non-rejection of the null hypothesis.

It can be observed that the use of Bayesian methods with Dirichlet conjugate priors to assess
Hardy-Weinberg equilibrium has been yielding good results. Reis et al. (2008) described a Bayesian
method to study Hardy-Weinberg equilibrium through the inbreeding coefficient. In this work,
the authors analyzed various models and concluded that the best model is the one using Dirichlet
priors.

Moreover, Reis et al. (2011) concluded that the Bayesian methodology proved to be efficient in
studying the Hardy-Weinberg model, being evaluated and confirmed by simulation studies, pre-
senting estimates very close to the real value.

Furthermore, Cunha Filho et al. (2020) noticed that Bayesian analysis obtained results relatively
closer to reality to verify the Hardy-Weinberg equilibrium hypothesis and has the advantage of
being applicable to samples of any size. The Bayesian methods presented were efficient in testing
Hardy-Weinberg equilibrium. Its application may serve as a subsidy for the researcher’s decision-
making to be as close as possible to reality.

It can be observed that there are works in the literature with the Bayesian approach, but with
the sequential Bayesian approach in this area, it is a novelty. The results obtained with this approach
were of great utility, as it optimized the procedure.

4. Conclusions
This study demonstrates that it was possible to apply the sequential Bayesian approach to estimate

allele and genotype proportions, for verifying the occurrence of Hardy-Weinberg equilibrium, in
a population of piracanjuba fish (Brycon orbignyanus).

There was efficiency in the sequential Bayesian approach, reducing the sample size and utilizing
only 55.1% of the available data for analysis. Additionally, it is noteworthy that the use of this
approach in this field is a novelty. Moreover, it can be applied in various other areas for different
procedures of interest, aiming to reduce time and/or cost.
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