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Abstract
Maintenance actions on industrial equipment are essential to reduce expenses associated with equipment
failures. Based on a well-fitted model, it is possible, through the estimated parameters, to predict several
functions of interest, such as the cumulative average and reliability functions. In this paper, a new frailty
model is proposed to analyze failure times of repairable systems subject to unobserved heterogeneity
actions. The Non-Central Gamma distribution is assumed to the frailty random variable effect. The class
of minimal repair models for repairable systems is explored considering an approach that includes the
frailty term to estimate the unobserved heterogeneity over the systems’ failure process. Classical inferential
methods were used to parameter estimation and define the reliability prediction functions. A simulation
study was conducted to confirm the properties expected in the estimators. Two real-world data known
in literature were used to illustrate the estimation procedures and validate the proposed model as a viable
alternative to those already established in the literature. The results obtained highlight the potential of
our proposed approach, particularly for industries dealing with such systems, where unquantifiable factors
may impact equipment failure times.
Keywords: Frailty models; Non-central Gamma distribution; Repairable systems; Minimal repair; Reli-
ability prediction.

1. Introduction
The reduction of expenses with actions for the maintenance of machinery(ies) is one of the main

issues investigated in many industries that has led to the development of a huge literature dedicated
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to the so-called reliability theory. With technological advances and the increasing complexity of
systems, the study of their reliability has been of great interest, especially for repairable systems.

When considering a system, be it a machine, electronic equipment or software, it is said to be
repairable when after a failure its activity can be satisfactorily resumed through repair, without the
need for its replacement as a whole, according to the definition given by Ascher & Feingold (1984).
Otherwise, a system is non-repairable when after its single failure it is discarded. Therefore, after
a failure occurs, it is possible for the repairable system to be restored to operation condition by a
repair action.

The study of repairable systems has wide application in contexts where the presence of recur-
ring events is identified, such as in industry, where consecutive system failures are often observed.
Investments in proper maintenance and repair to extend the lifetime of systems are essential, because
in many cases repair is more economically feasible than replacing one or more components. The
main challenge when modeling data from repairable systems is how to explain the effect of a repair
action taken immediately after a failure. It is generally assumed that repair actions are instantaneous
and the repair time is negligible (de Toledo et al., 2015).

Among the usual models of repairable systems, the Minimal Repair (MR) model, known in the
literature as As Bad as Old (ABAO), is widely used due to the speed of repair and the low associated
cost. This repair focuses on correcting only the component originating the failure, consequently
leaving the system in the same working condition as before the failure, according to assumptions
discussed in different works such as Barlow & Proschan (1996), Wang (2002), and de Toledo et al.
(2015).

The statistical modeling usually used for these systems is done by counting process, which is
a stochastic process that counts the number of occurrences of an event of interest in the time in-
terval [0, t]. We can classify the counting process as Homogeneous Poisson Process (HPP) and
Non-Homogeneous Poisson Process (NHPP), being that for the latter, the intensity function is not
constant. A particular parametric NHPP case widely used in the literature and that will be used in
this study is the Power Law Process (PLP) proposed by Crow (1975), which is attractive for the ease
of interpretation of its parameters and simplicity of implementation.

In the literature we found some methods for modeling data from repairable systems that do not
incorporate the heterogeneity between the systems, and with this it is not possible to measure the
most fragile, i.e., those that are more prone to fail (D’Andrea et al., 2017; Vaupel et al., 1979). It is
relevant to verify how the heterogeneity of each system can impact on the main measures being
investigated, such as increased failure rates (Proschan, 1963).

Frailty models are an alternative to estimate the unobserved heterogeneity of systems and are
characterized by incorporating a random effect, either additively or multiplicatively, introduced by
Vaupel et al. (1979). In the recent reliability literature, there has been increasing interest in data
analysis of repairable systems incorporating frailty, with different parametric and non-parametric
distributions assumed for frailty.

The choice of distribution for an unobservable random variable (frailty) is a problematic part
when we are in an approach that considers this term in the model. Incorrect specification of the
frailty distribution can lead to errors in the estimates of the parameters of interest, as is exposed
in Almeida et al. (2020). The study considered a non-parametric approach to modeling the frailty
density. By using Bayesian methods, an a prior Dirichlet process mixture is assigned to frailty, which
in turn is more flexible and provides consistent estimates for the PLP model, as well as insights into
heterogeneity among systems (Ascher & Feingold, 1984).

In particular, Slimacek & Lindqvist (2016) present a new method that seeks to avoid numerical
problems often encountered in the estimation of models that incorporate frailty, in which the pro-
posal is to estimate the parameters of a NHPP process with unobserved heterogeneity that does not
require parametric assumptions. In addition, examples are illustrated involving the PLP compared
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to the Gamma frailty model and the model that does not consider the frailty term.
On the other hand, according to Wienke (2010), a parametric specification of the frailty dis-

tribution is a matter of mathematical convenience. Therefore, assigning a mathematically tractable
distribution to the frailty variable with adequate properties can result in suitable models to estimate
unobserved heterogeneity. In this sense, due to its mathematical simplicity, the Gamma distribution
has traditionally been used as a frailty distribution in works in the areas of survival and reliability
analysis, as also discussed by Wienke (2010).

In order to propose a distribution for the frailty term that is mathematically convenient as the
Gamma distribution, which is used in most studies, Tomazella (2003) concluded that the inverse
Gaussian distribution has properties equally simple to the Gamma distribution. Additionally, sim-
ulation studies were performed to infer on the parameters of interest and a Bayesian approach was
proposed considering multiplicative and additive frailty models.

In a recent work, to deal with life insurance data, Onchere et al. (2021) propose a more flexible
distribution for the frailty term, the Non-central Gamma distribution. According to these authors,
this distribution can represent time-varying frailties and fits well to real life assurance data. In ad-
dition, they considered the Weibull, log-logistic and log-normal baseline risk functions and their
results indicate that the Non-central Gamma-Weibull frailty model is adequate for the data in ques-
tion.

Although the work of Onchere et al. deals with non-recurring events, the idea of a distribution
capable of representing time-varying frailties is particularly attractive for models with recurring
events. It is reasonable to think about the existence of unobservable factors that can influence the
occurrence of recurring events differently in different periods of time. Furthermore, the Non-
central Gamma distribution is flexible and also presents mathematical facilities such as a closed form
for the Laplace Transform.

In view of the above, it is possible to realize the relevance of incorporating the frailty term with
a different distribution in the modeling of repairable systems, seeking for more flexible assumptions
that better fit different scenarios. In this way, this paper will explore the models for repairable
systems, submitted to minimal repairs with the effect of frailty, where times will be modeled by
the PLP process, while for frailty the Non-central Gamma distribution will be considered. So far
the approach with this frailty is unknown in the literature in a perspective that considers recurrent
events and this is a relevant contribution of our work.

This paper is divided as follows. Section 2 reviews the Non-central Gamma distribution, models
for repairable systems under minimal repair, and frailty modeling. In Section 3, the Non-central
Gamma frailty model is introduced. In Section 4, some properties are verified through a simulation
study. In Section 5, applications to real data are made. Finally, in Section 6, final considerations are
raised.

2. Background
In this section we present the theoretical background used as a basis for our proposed Non-

central Gamma (NCG) frailty model for repairable systems. Initially, in Section 2.1, we define the
NCG distribution and outline some of its key features. In Section 2.2, we present the main ideas of
modeling failure times for systems subject to minimal repairs. Concluding our review in Section
2.3, we provide a brief characterization of multiplicative frailty models.

2.1 Non-central Gamma distribution
According to Knüsel & Bablok (1996) and de Oliveira & Ferreira (2013), the NCG distribution

can be defined as a mixture of a discrete distribution and a continuous distribution, where the first
distribution is a Poisson and the second is a central Gamma. Onchere et al. (2021), in turn, define
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the NCG distribution as a convolution generated by the sum of Gamma distributions with Poisson
weights. Summarizing the ideas and definitions presented by these authors, the NCG distribution
can be defined in a general way as a mixture of a Gamma(a + m, b) with weights Poisson(φ). In this
way, let Z be a random variable with a NCG distribution, the probability density function (pdf ) of
Z is defined by

f (z) =
∞∑

m=0

e–φφm

m!
za+m–1e– z

b

Γ (a + m)ba+m , z > 0, (1)

where φ > 0 is called the non-centrality parameter and a ≥ 0 and b > 0 comes from the Gamma
distribution.

The NCG distribution is generally asymmetrical and its skewness is controlled by the non-
centrality parameter. Figure 1 shows different behaviors of the density function of the NCG distri-
bution for different parameter values. In this figure, parameter a has a fixed value of zero, since this
will be an assumption adopted later in this work.
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Figure 1. (a) NCG pdf for fixed b = 3 and variable φ values, and (b) NCG pdf for fixed φ = 50 and variable b values. Both
cases with a = 0 fixed.

A relevant characteristic of the NCG distribution is that it has a closed form for the Laplace
Transform, which is given by

L(s) = (1 + bs)–a exp

(
–

bφs
1 + bs

)
. (2)

As a direct consequence, we can easily obtain the expectation and variance of the NCG distri-
bution, which are respectively given by E[Z] = b(a + φ) and Var[Z] = b2(a + 2φ).

The calculations for obtaining the Laplace Transform, the expectation and the variance of the
NCG distribution are presented in Appendix 1.

2.2 Review of minimal repair models for repairable systems
Minimal repair models are already widely known and discussed in the reliability literature. The

tool of theses studies is the time elapsed until the occurrence of a failure, which can be represented
by a random variable T. In the context of repairable systems, failure events are recurrent, which
leads to obtaining a non-decreasing sequence of positive random variables 0 < T1 ≤ T2 ≤ . . .
which represent the failure times.

Let N(t) be a number of observed failures in the interval [0, t]. Under the MR assumption,
{N(t), t ≥ 0} is considered a NHPP, that is, a counting process with independent increments, N(0) =
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0 and completely characterized by a non-constant intensity function λ(t) (Gilardoni & Colosimo,
2007). Furthermore, for any t, N(t) has a Poisson distribution with mean Λ(t), where Λ(t) =
E[N(t)] =

∫ t
0 λ(u)du is the cumulative intensity function.

Assuming that the intensity function λ(t) can be described by a parametric model with a vector
of parameters µ, the failure time history of one or multiple identical systems under MR models can
be used to estimate this parameter vector. In a classical inference approach, the likelihood method
can be used to obtain the maximum likelihood estimators for the parameters (Tomazella, 2003).
Assume that k identical repairable systems are under observation and let 0 < ti,1 < ti,2 < · · · < ti,ni
be their failure times, where ti,j is the j-th failure time of the i-th system, with i = 1, . . . , k and
j = 1, . . . , ni. Note that ni is the total number of observed failures of the i-th system and consider
that for each system i there is still an observation truncation time t∗i with ti,ni ≤ t∗i .

So, the general likelihood function for the MR model considering the k identical systems is given
by

LMR(µ | ti,j) =
k∏

i=1


 ni∏

j=1
λ(ti,j)

 e–Λ(t∗i )

 . (3)

Furthermore, the intensity function can be used to compute predictors of the reliability function.
Let Ti,n = ti,n be the last observed failure time of the system i and t = Ti,n+1–ti,n the time until the next
failure. Considering the parametric MR model with vector of parameters µ, the general reliability
at time t for the system i is given by

R(ti,n+1 | ti,n) = P[Ti,n+1 – ti,n > t | ti,n] = P[N(ti,n+1) – N(ti,n) = 0] (4)

= exp

(
–
∫ ti,n+1

ti,n
λ(u)du

)
= exp (–Λ(ti,n+1) + Λ(ti,n)) .

Note that the function (4) expresses the probability that the system will run without failure for
a period of time greater than t after the last failure time ti,n, given the failure history of the process.

All the information about MR models that we present here is known in the reliability literature
and, particularly, the estimation and prediction of reliability are general for whatever the parametric
form of λ(t) is. Among the possible forms, we will present and use in this work the PLP. Introduced
by Crow (1975), the PLP is a parametric model widely used in the literature for NHPP, in which
its intensity and cumulative intensity functions are respectively given by

λ(t | β,η) =
β

η

(
t
η

)β–1
and Λ(t | β,η) =

(
t
η

)β

, (5)

where η > 0 is the scale parameter and β > 0 is the shape parameter. The PLP is commonly assumed
for MR models since its parameters have a physical interpretation in the following sense: the param-
eter η indicates the time during which exactly one failure is expected to occur, that is, E[N(η)] = 1,
while the parameter β indicates whether the system is deteriorating (β > 1) or improving (β < 1)
(Dias De Oliveira et al., 2013).

To obtain the likelihood and reliability prediction functions considering the PLP parametric
model, just replace λ(t) and Λ(t) in the equations (3) and (4) by the intensity and cumulative intensity
functions given in (5). In this case, the model vector parameter will be µ = (β,η). This procedure
and respective observations can be seen in Brito et al. (2022), Almeida et al. (2020), and Coque Junior
(2016).
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2.3 Frailty models
As stated in the introduction of this work, frailty models incorporate in the intensity function

a latent random variable Z that captures random effects. This variable is drawn from a distribution
f (z; θ) and, in this study, it will be included in the intensity function in a multiplicative manner. In
this sense, frailty models are considered as natural extensions of the Cox model. Disregarding the
presence of covariates, a multiplicative frailty model for repairable systems is described by

λ(t | z) = zλ0(t),

where λ0(.) is the baseline intensity function and z is the frailty term.
The choice of f (z) is an important point to consider and some authors have already discussed the

impacts of adopting different distributions for the frailty term, e.g. Hougaard (1984) and Tomazella
(2003)). Any continuous or discrete distribution with positive support, finite mean and unknown
finite variance can be chosen as a frailty distribution. However, some conditions must be satisfied
for the baseline intensity function to be identifiable, such as E[Z] = 1 and Var(Z) = θ (Elbers &
Ridder, 1982). These restrictions lead to the following interpretations of the frailty term: if zi > 1,
the failure intensity is increasing; if zi < 1, the failure intensity is decreasing; and if zi = 1, the
model reduces to the baseline intensity function.

3. NCG frailty model for repairable systems
In this section we present the proposed NCG frailty model for multiple repairable systems under

MR. In addition, we present the likelihood function used to estimate the model parameters as well
as the reliability prediction function.

As mentioned earlier, to avoid identifiability problems in the model with frailty following a Z
distribution, the model requires that its expectation is equal to 1 and its variance is constant. To
guarantee this assumption when defining that the frailty Z has an NCG distribution and following
the idea presented in Onchere et al. (2021), it is necessary to assume that the parameter a in the
equation (1) is equal to zero. Furthermore, considering Var[Z] = θ the parameters b and φ of
equation (1) will be reparametrized as b = θ/2 and φ = 2/θ, so that the expectation is such that
E[Z] = 1. In this case, the pdf of the frailty Z in equation (1) can be rewritten as

f (z) =
∞∑

m=0

e– 2
θ

(
2
θ

)m

m!
zm–1e– 2z

θ

Γ (m)
(
θ
2

)m . (6)

Consequently, the Laplace Transform given in equation (2) can be rewritten as

L(s) = exp

(
–

s
1 + θ

2 s

)
.

Obtaining a closed form for the Laplace Transform is a particularly interesting result for the
frailty proposal with NCG distribution, especially for the calculation of the likelihood function.
This is because the likelihood function must be obtained in a non-conditional way to frailty Z and
the integrals used in these calculations are not trivial. However, if Z has a distribution that assumes
a closed form for the Laplace Transform, this problem is easily solved.

According to Wienke (2010), the unconditional reliability function is given by R(t) = L(Λ0(t))
and the intensity function unconditional the frailty term is given by λ(t) = –λ0(t)L

′(Λ0(t))
L(Λ0(t)) .
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Therefore, the unconditional reliability function for the NCG frailty model is given by

R(t) = exp

(
–

Λ0(t)

1 + θΛ0(t)
2

)

and the unconditional intensity function and the unconditional cumulative intensity function for
the NCG frailty model are respectively given by

λ(t) =
λ0(t)(

1 + θΛ0(t)
2

)2 and Λ(t) =
Λ0(t)

1 + θΛ0(t)
2

, (7)

where λ0(t) and Λ0(t) are the baseline intensity function and the baseline cumulative intensity func-
tion, respectively.

The functions in (7) can be interpreted as functions of population intensity and cumulative
population intensity that depend directly on the baseline functions and the variance of the assumed
NCG frailty. The failure intensity function in (7) can assume unimodal forms and not just an
increasing or decreasing form (as the PLP intensity function without frailty, for example), which is
especially useful for modeling situations where the failures can be concentrated in one period and
occur less frequently in other periods.

Having defined the frailty model functions, we now want to use observed data to estimate the
model parameters. Consider k repairable systems under observation for a period t∗i , i = 1, . . . , k
so that ti,1, ti,2, · · · , ti,k are the failure times of the i-th system and t∗i is the truncation time of the
observation of this system. Let us assume that these systems undergo minimal repairs after each fail-
ure, so on the classical approach the population parameters can be estimated through the maximum
likelihood method.

Let us assume that each failure process follows a PLP whose failure intensity and cumulative
intensity functions are given by (5) and that there is an unobserved heterogeneity between the
failure times modeled by the NCG distribution given in (6). Therefore, the vector of parameters to
be estimated in the model is µ = (β,η, θ), where β and η are the parameters of the PLP model and
θ is the variance of the NCG frailty. In this case, the likelihood function in (3) can be rewritten as

LMR(β,η, θ | ti,j) =
k∏

i=1

{ ni∏
j=1

(
β

η

( ti,j
η

)β–1
[

1 +
θ

2

( ti,j
η

)β
]–2)

exp

(
t∗i
β

ηβ + θ
2 t∗i

β

)}
, (8)

and consequently, the log-likelihood function is given by

lMR(β,η, θ | ti,j) = N
[
log(β) – β log(η)

]
+ (β – 1)

k∑
i=1

ni∑
j=1

log(ti,j)

– 2
k∑

i=1

ni∑
j=1

log

[
1 +

θ

2

( ti,j
η

)β
]

+
k∑

i=1

t∗i
β

ηβ + θ
2 t∗i

β
,

(9)

where N =
∑k

i=1 ni is the total number of observed failures across all systems.
Given the complexity of the expression (9) and its partial derivatives, it is not possible to ob-

tain the maximum likelihood estimators analytically. Therefore, numerical methods can be used to
circumvent this problem and thus obtain the estimates. The confidence intervals of the estimated
parameters can be constructed from the asymptotic theory based on the properties of the maximum
likelihood estimators and the Normal distribution.
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Finally, based on the reliability predictor function for the classical MR model presented in (4),
we can define the reliability predictor function for our proposed NCG frailty model. Given the
maximum likelihood estimates (β̂, η̂, θ̂) of the NCG frailty model parameters and let t = Ti,n+1 – ti,n
be the time until the last observed failure time ti,n to the next failure time Ti,n+1, the reliability
function is given by

R(ti,n+1 | ti,n) = exp (–Λ(ti,n+1) + Λ(ti,n)) , (10)

where the cumulative intensity function Λ(t) is the cumulative intensity function of the NCG frailty
model given in (7).

4. Simulation study
In this section, we conduct a simulation study to assess the efficiency and consistency perfor-

mance of the maximum likelihood estimator (MLE) defined by maximizing the log-likelihood func-
tion in the model presented in (8). The main objective is to show that the asymptotic properties of
the proposed maximum likelihood estimators are observed in samples of a simulated population of
failure times with frailty effects induced by the NCG distribution.

To evaluate the consistency and efficiency of the MLE of the NCG frailty model with PLP base
intensity we used three metrics, based on similar studies carried out in the reliability literature: the
mean relative error (MRE), the square root of the mean standard error (RMSE) and the coverage
probability (CP) of the confidence interval (CI). These three metrics are respectively defined by

MRE(µ̂) =
1
M

M∑
m=1

µ̂m
µ

, RMSE(µ̂) =

√√√√ 1
M

M∑
m=1

(µ̂m – µ)2 and CP(µ̂) =
1
M

M∑
m=1

I[µ̂m ∈ (am, bm)],

where:

• M is the number of samples to be simulated;
• µ represents one of the parameters to be estimated (β, η or θ) and µ̂m is its estimate in the m-th

sample;
• am = µ̂m – 1.96 × SE(µ̂m) is the lower bound of the 95% CI of the m-th estimate;
• bm = µ̂m + 1.96 × SE(µ̂m) is the upper bound of the 95% CI of the m-th estimate;
• I is the indicator function and SE(µ̂m) is the standard error of the m-th estimate.

By this approach, it is expected that as we increase the sample sizes of observed failure times, the
MRE will asymptotically approach 1, the RMSE will approach 0 and the CP will reach an adequate
percentage of coverage of the nominal values of the parameters by the asymptotic CI (here we are
adopting 95%). The increase in the sample will occur by increasing the number of observed systems.
In this case, the number of failures observed in each system is random, however, it is reasonable to
expect that the more systems observed, the more failure times are recorded.

To generate the failure times for each system, the population unconditional cumulative intensity
function of the NCG frailty model defined in (7) will be used. More specifically, let tj and tj+1
be two consecutive failure times such that tj+1 = tj + x. As described in Brito et al. (2022), the
cumulative distribution function F(x) for the elapsed time X between two consecutive failures is
F(x) = 1–P[N(tj +x)–N(tj) = 0]. Under the MR assumption, the counting process N(t) is an NHPP
and as discussed in Section 2.2, the cumulative distribution function can be rewritten as

F(x) = 1 – e–[Λ(tj+x)–Λ(tj)],
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where Λ(t) is the cumulative intensity function of the NCG frailty model, given in (7). Thus, to
generate each process failure time, simply generate the time between two consecutive failures as a
solution to the equation F(x) = u, where u is an observation of the Uniform(0, 1) distribution. This
procedure will be repeated until the desired number of failures are generated or until the predefined
truncation time is reached. Furthermore, considering k distinct s, this entire procedure will be
repeated independently k times.

The algorithm below describes the process of generating failure times for k systems, defining a
truncation time t∗ of the observations for each system.

1. Set parameter values for β, η and θ;
2. Set i the system index (i in {1, . . . , k});
3. Set a truncation time t∗i ;
4. Set ti,0 = 0 and j = 1;
5. Draw ui,j from a Uniform(0, 1) distribution;
6. Solve the equation 1 – e–[Λ(ti,j–1+x)–Λ(ti,j–1)] = ui,j, where Λ(·) is given in (7);
7. Set ti,j = ti,j–1 + x;
8. If ti,j > t∗i stop simulation and discard ti,j. Otherwise, set j = j + 1 and repeat steps 5-7.

Different combination scenarios of model parameters were considered for the simulation study,
as well as different sample sizes based on the number of systems. Due to the unimodal characteristic
of the NCG frailty model’s failure intensity function, for each parameter scenario the truncation
time was defined as the time t∗ such that λ(t∗) < 0.001, since the model loses influence in the
generation of failure times when the intensity asymptotically approaches zero. Two fixed values
were defined for the parameter β = (0.8, 1.2), to consider the two cases where the PLP baseline
intensity function is increasing and decreasing. For each fixed β, three values were defined for the
parameter θ = (0.05, 0.1, 0.2), that include different variances for the assumed NCG frailty. For each
combination of parameters β and θ, a parameter η was defined to complete the scenario. Here, we
will present the results of six different scenarios that represent the aforementioned model variations.

For each defined scenario, 1,000 samples were generated following the previously defined algo-
rithm and, for each sample, the β̂, η̂ and θ̂ estimates of the parameters β, η and θ, respectively, were
obtained. From there, the previously defined MRE, RMSE and CP metrics were obtained and the
results are summarized and shown in Figures 2 and 3. Additionally, all results are reported in Tables
5-10 in Appendix 2.

From Figures 2 and 3, it is possible to see that, in general, the expected behaviors of the three
metrics presented are verified in all determined scenarios. It is noticeable that increasing the sample
size by increasing the number of observed systems results in CP increasingly close to the nominal
value of 95% and RMSE increasingly close to zero for all parameters. It is clear and expected that
specifically for the parameter η the RMSE value converges more slowly to zero, given the magni-
tude of the nominal values of this parameter; however, observing the MRE graphs, the expected
convergence of this parameter to the nominal value is verified. In scenarios where there is a greater
variance of frailty (θ = 0.2), it can be seen from the MRE graphs that the parameter θ can be slightly
underestimated by the model; however, the interval estimates encompass the true nominal values as
observed by the high percentage coverage on the CP graphs.

We can conclude through the analysis of the simulation studies that the estimators for the pro-
posed model perform well, especially for large samples.
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Figure 2. Simulation results for NCG frailty model with fixed β = 0.8.
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Figure 3. Simulation results for NCG frailty model with fixed β = 1.2.
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5. Application to real data
In this section we present two applications revisiting two known datasets in the reliability liter-

ature. The idea is to verify whether in these data it is possible to identify the presence of unobserved
heterogeneity in the failure times of the systems and to verify whether the proposed NCG frailty
model is adequate for such data.

In both examples the parameters were obtained using the maximum likelihood method through
the likelihood and log-likelihood functions defined in (8) and (9) respectively, and the confidence
intervals were obtained using the asymptotic theory of the normal distribution, as mentioned in
Section 3. In addition, we also used the well-known Gamma frailty model to compare the fits
obtained with the proposed model in both datasets and we used the Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC) as selection criteria between these two models
(for more details on these criteria, see, e.g., Burnham & Anderson (2004)).

5.1 Sugarcane harvester data
The first application deals with a set of failure times of 9 Brazilian sugarcane harvesters. This

dataset was originally presented by Verssani (2018) and a subset of these harvesters was used in
the frailty analysis under the assumption of minimal repair presented in D’Andrea et al. (2021).
Specifically, the times of failure of the cutting blade system of these harvesters during the period
of high sugarcane harvest are observed between the years 2014 and 2015, for a period of 200 days.
Note that the truncation time of observations for all of them is the same equal to 200 days.

Table 1 shows the observed failure times of each harvester. Note that the truncation time of
observations for all of them is the same equal to 200∗ days.

Table 1. Harvester cutting blade system failure times

System 1 10 42 51 68 85 110 120 146 157 167
194 200∗

System 2 23 24 39 41 72 83 95 100 116 125
136 138 165 166 200∗

System 3 4 14 30 48 72 90 103 117 125 136
157 171 173 175 200∗

System 4 13 32 44 66 74 93 99 107 121 129
131 153 157 163 185 200∗

System 5 9 13 14 22 24 40 49 52 61 79
97 106 116 117 132 143 148 171 196 200∗

System 6 8 9 25 31 40 62 73 88 107 118
124 154 158 178 200∗

System 7 2 8 33 44 72 89 129 143 164 189
190 200∗

System 8 1 29 31 38 60 82 83 101 102 128
129 153 182 200∗

System 9 35 42 59 70 87 91 92 116 117 118
123 151 158 166 181 182 200∗

Substituting the failure times ti,j observed in Table 1 into the likelihood function shown in (8),
numerical and computational methods can be used to maximize this function and obtain the desired
MLEs. This maximization procedure was performed using the software R (R Core Team, 2021),
specifically using its optim function. Despite the algebraic complexity of the likelihood function,
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making it impossible to obtain the MLE analytically, this is not a major problem from a computa-
tional point of view, so these estimates were easily obtained.

As stated earlier, we also used the Gamma frailty model for repairable systems under minimal
repair by D’Andrea et al. (2017) to estimate their parameters and compare with the results obtained
by our NCG frailty model. The results of the parameter estimates for the both models are shown
in Table 2. In addition, this table lists the maximum values of the log-likelihood function of each
model, as well as the AIC and BIC values.

Table 2. Estimation results for the frailty NCG and Gamma models applied to sugarcane harvesters data

Model β̂ η̂ θ̂ l̂ AIC BIC

Gamma 1.107 14.262 0.0378 -463.263 932.527 941.265
NCG 1.115 14.444 0.0349 -463.220 932.439 941.177

It is immediately possible to see the similarity between the estimates of β̂, η̂ and θ̂ for both
models. In terms of comparing the models, the AIC and BIC values indicate that the NCG frailty
model is slightly superior to the Gamma model for this data set under minimal repair, since they
presented lower values. Although the difference in the information criteria for the two models is
small, this result shows that our proposed model for NCG frailty is a good alternative to the Gamma
model, and may even present slightly more parsimonious estimates.

In addition to the point estimates presented in Table 2, the interval estimates for the parameters
of the NCG frailty model were also obtained through asymptotic CIs. The 95% CIs for the MLE
β̂, η̂ and θ̂ are, respectively, CI

β̂
= (0.81, 1.53), CIη̂ = (8.83, 23.64) and CI

θ̂
= (0.006, 0.207).

The point estimate of parameter β indicates that the systems are deteriorating over time once β̂ >
1, however this interpretation may not be true since the lower limit of CI is less than 1. Regarding
the frailty, despite small, a value greater than zero was obtained for the variance of the frailty variable
(θ̂ > 0), indicating the existence of unobserved heterogeneity between the systems and their failure
times. In this sense, this result is in line with the other results obtained for this data set in the
literature, indicating the existence of unobserved effects on the failure time of the harvesters, since
the existence of frailty effects was captured.

Finally, we use the equation (10) to estimate the reliability prediction function at the last observed
failure time for each harvester. Figure 4 shows the reliability prediction function for the NCG frailty
model related to each harvester of this study. It is possible to notice that all harvesters have almost
zero reliability after 50 days of the last failure, given the history of each failure process. Furthermore,
it is possible to notice that the median expected time to the next failure (i.e., the time such that the
expected reliability is 0.5) is close to the estimated η̂ = 14.4 value, for all harvesters.

5.2 Literature systems data
The second application deals with the failure times of the set of repairable systems presented in

Mettas & Zhao (2005). In the original work, failure times of six systems with different observation
truncation times are presented. However, for our application we will use the failure times of only
three of these systems, since the other systems have a very low number of observed failures (one or
two failures).

Table 3 shows the observed failure times of each of the systems. The times marked with “ ∗ ”
are the truncation times of the observation of each system.

The same procedures as in the previous example were repeated here. Table 4 shows the MLE ob-
tained for the Gamma and NCG frailty models, as well as their estimates of maximum log-likelihood
and AIC and BIC values. Once again, it is noticeable that the point estimates are very close for the
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Figure 4. Estimated reliability functions at last failure times tn, for each harvester in the data set, under the fitted NCG frailty
model.

Table 3. Systems failure times

System 1 2227.08 2733.23 3524.21 5568.63 5886.17
5946.30 6018.22 7202.72 8760∗

System 2 772.95 1034.46 3011.11 3121.46 3624.16
3758.30 5000∗

System 3 900.99 1289.95 2689.88 3928.82 4328.32
4704.24 5052.59 5473.17 6200∗

two models. Again, the AIC and BIC selection criteria indicate a slight superiority of our NCG
frailty model over the gamma model.

Table 4. Estimation results for the frailty NCG and Gamma models applied to literature systems data

Model β̂ η̂ θ̂ l̂ AIC BIC

Gamma 1.883 1518.044 0.187 -170.477 346.953 350.610
NCG 1.878 1583.923 0.131 -170.348 346.696 350.353

The 95% CIs for the MLE β̂, η̂ and θ̂ of the NCG frailty model are, respectively CI
β̂

=
(1.04, 3.38), CIη̂ = (907.92, 2763.25) and CI

θ̂
= (0.04, 0.41). In this case, we have more assertive

conclusions about the estimates obtained. First, regarding the parameter β, both the point and
interval estimates are greater than 1, indicating that the systems are deteriorating over time. Fur-
thermore, the point and interval estimates of parameter θ are greater than zero, again capturing the
existence of unobserved heterogeneity between systems and their failure times.
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Once again, we use the equation (10) to estimate the reliability prediction function at the last
observed failure time for each system in the studied dataset. The results of the estimated reliability
prediction functions for the NCG frailty model are shown in Figure 5. The reliability probability
for 2,000 days after the last failure is very close to zero for each system, given the entire history of
its failure process. As in this case the estimate θ̂ did not approach zero, the interpretation for the
parameter η̂ cannot be done as in the previous example, since the high variance of the frailty variable
impacts the interpretation of this parameter in the PLP, as discussed previously.

System 3

System 2

System 1

0 1000 2000 3000

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Days of operation after T = tn

R^
(t

)

NCG frailty reliability

Figure 5. Estimated reliability functions at last failure times tn, for each system in the data set, under the fitted NCG frailty
model.

6. Final remarks
In this article, the main focus was to incorporate and estimate the frailty term in a model for

repairable systems subject to unobserved heterogeneity, under the assumption of minimal repair.
For the studied model, the likelihood functions and the reliability prediction functions were de-
rived. The times were modeled by the PLP process, while the NCG distribution was considered as
distribution for the frailty term.

A simulation study considering different scenarios was carried out to verify the quality of the
obtained estimators and their behavior. It was found that the results obtained are in line with expec-
tations, since the estimates generated were close to the actual values of the parameters predefined in
the study, returning expected values for the analyzed metrics (MRE, RMSE and CP).

Two applications were made to real data. We verified that the model has better performance
according to the considered evaluation criteria even if they were close to the alternative model that
assumes the Gamma distribution for the frailty term. Furthermore, the parameter estimates are in
agreement with the results found in the literature in applications for the same datasets.

Furthermore, in each application it was possible to predict the reliability of each system, based
on their failure process history and the obtained estimates of the model parameters. These results
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show that the approach proposed in this work is effective and can be applied in different industry
situations

With this, the application in real data showed that the proposed approach is capable of providing
useful information for decision making in complex systems, such as forecasting until the first failure.
In summary, the results from the simulation and applications on real data corroborate the assertion
that the proposed approach constitutes a valuable tool for the analysis of reliability in repairable
systems with NCG distribution frailty.

Therefore, as up to the present moment the approach with this frailty was unknown in the
literature in a framework of repairable systems. The results obtained from theoretical discussions,
applications to real data and the simulation study show that the model proposed in this work is
relevant and presents a modeling alternative that clearly identifies the existence of unobservable
factors, such as heterogeneity over the systems’ failure times. It is worth remembering that such
factors directly interfere with the failure intensity function of the systems, which is closely linked
to the useful life of the systems.

Finally, this study presents an alternative propose when we are dealing with non-central dis-
tributions. We emphasize here the importance of one more option for frailty distribution among
the models already existing in the literature. The studies developed here are not exhaustive and we
emphasize the importance of investigating other approaches, such as other methods of estimating
the parameters of interest.
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Appendix 1. Calculations for the NCG distribution
In this appendix we present some calculations and results concerning the NCG distribution. As

the NCG distribution is not widely known and commonly used by professionals and students of
Statistics, recording these procedures and results can be useful for future queries about this distribu-
tion. The idea here is to obtain the closed form of the Laplace Transform for this distribution and
from it calculate the expectation and variance.

Let Z be a random variable with NCG distribution, whose pdf is given by the equation (1). It is
known that the Laplace Transform of a function f (z) is defined by

L(s) =
∫ ∞

0
e–szf (z)dz. (11)

Substituting the pdf fZ(z) defined in (1) in the equation (11) and following with algebraic ma-
nipulations, the Laplace Transform is rewritten as

L(s) =
∫ ∞

0
e–sz

∞∑
m=0

e–φφm

m!
za+m–1e– z

b

Γ (a + m)ba+m dz

=
∞∑

m=0

e–φφi

m!
1

ba+m
1

(s + b–1)a+m

∫ ∞

0

(s + b–1)a+mza+i–1e–z(s+b–1)

Γ (a + m)
dz

= e–φ
∞∑

m=0

φm

m!

(
1

1 + bs

)a+m

=
e–φ

(1 + bs)a
∞∑

m=0

1
m!

( φ

1 + bs

)m

=
e–φ

(1 + bs)a
exp

( φ

1 + bs

)
=

1
(1 + bs)a

exp

(
–

bsφ
1 + bs

)
.

As a consequence, the first and second derivatives of the Laplace transform are respectively given
by

L′(s) = –
b

(1 + bs)a+1 exp

(
–

bφs
1 + bs

)[
a +

φ

1 + bs

]
and

L′′(s) =
b2

(1 + bs)a+2 exp

(
–

bφs
1 + bs

)[(
a +

φ

1 + bs

)(
a + 1 +

φ

1 + bs

)
+

φ

1 + bs

]
.

Finally, the expectation and variance of the random variable Z with NCG distribution can be
easily obtained by derivatives of the Laplace Transform (see, e.g. Wienke, 2010), as follows:

E[Z] = –L′(0) = b(a + φ),

Var[Z] = L′′(0) – (L′(0))2 = b2(a + 2φ).
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Appendix 2. Simulation study results tables

In this Appendix we present the detailed results of the simulation study discussed in Section 4.
Tables 5-7 below refer to the results summarized in Figure 2, while Tables 8-10 refer to the results
summarized in Figure 3.

Table 5. Simulation study results for scenario β = 0.8, η = 20 and θ = 0.05

RMSE MRE CP

k β η θ β η θ β η θ

5 0.209 11.677 0.052 1.094 1.191 1.201 0.912 0.912 0.830
10 0.149 7.681 0.041 1.043 1.090 1.033 0.898 0.928 0.884
15 0.116 5.824 0.036 1.029 1.056 1.010 0.917 0.944 0.886
20 0.100 4.900 0.032 1.018 1.036 0.987 0.904 0.948 0.902
25 0.088 4.228 0.029 1.009 1.023 0.965 0.920 0.946 0.907
30 0.081 3.820 0.027 1.009 1.028 0.946 0.920 0.960 0.919
35 0.075 3.787 0.027 1.005 1.032 0.925 0.921 0.948 0.933
40 0.070 3.397 0.024 1.006 1.022 0.961 0.932 0.943 0.925
45 0.068 3.221 0.024 1.009 1.022 0.974 0.933 0.948 0.918
50 0.066 3.112 0.023 1.006 1.017 0.961 0.932 0.945 0.926

Table 6. Simulation study results for scenario β = 0.8, η = 15 and θ = 0.1

RMSE MRE CP

k β η θ β η θ β η θ

5 0.212 9.577 0.067 1.064 1.210 0.919 0.922 0.922 0.913
10 0.148 5.814 0.054 1.028 1.095 0.883 0.908 0.944 0.920
15 0.127 4.738 0.048 1.014 1.078 0.865 0.913 0.945 0.940
20 0.100 3.861 0.041 1.001 1.058 0.856 0.938 0.951 0.955
25 0.098 3.598 0.040 0.999 1.046 0.860 0.922 0.935 0.960
30 0.084 3.105 0.037 0.995 1.043 0.853 0.950 0.946 0.965
35 0.080 2.896 0.035 0.991 1.027 0.851 0.948 0.945 0.976
40 0.078 2.710 0.033 0.998 1.033 0.872 0.937 0.941 0.963
45 0.073 2.557 0.031 0.994 1.029 0.866 0.946 0.945 0.976
50 0.068 2.488 0.030 0.997 1.038 0.872 0.955 0.951 0.973
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Table 7. Simulation study results for scenario β = 0.8, η = 10 and θ = 0.2

RMSE MRE CP

k β η θ β η θ β η θ

5 0.234 7.485 0.122 1.048 1.283 0.663 0.901 0.917 0.979
10 0.166 4.846 0.110 1.000 1.176 0.623 0.919 0.919 0.991
15 0.133 3.956 0.105 0.977 1.137 0.609 0.917 0.926 0.997
20 0.118 3.417 0.103 0.965 1.126 0.595 0.936 0.920 1.000
25 0.106 3.075 0.102 0.962 1.136 0.581 0.938 0.917 0.998
30 0.101 2.716 0.096 0.960 1.108 0.601 0.951 0.915 0.999
35 0.090 2.371 0.094 0.953 1.084 0.597 0.949 0.925 1.000
40 0.092 2.319 0.098 0.950 1.099 0.577 0.928 0.930 1.000
45 0.088 2.228 0.094 0.952 1.099 0.585 0.944 0.922 1.000
50 0.084 2.037 0.094 0.949 1.091 0.585 0.936 0.927 0.999

Table 8. Simulation study results for scenario β = 1.2, η = 20 and θ = 0.05

RMSE MRE CP

k β η θ β η θ β η θ

5 0.190 6.352 0.015 1.015 1.042 0.971 0.939 0.946 0.933
10 0.126 4.266 0.011 1.007 1.024 0.987 0.955 0.952 0.950
15 0.108 3.756 0.008 1.007 1.021 0.994 0.945 0.937 0.952
20 0.093 3.080 0.007 1.005 1.013 0.997 0.950 0.955 0.948
25 0.081 2.833 0.006 1.003 1.007 0.999 0.958 0.945 0.954
30 0.076 2.499 0.006 1.004 1.011 0.999 0.951 0.944 0.944
35 0.070 2.331 0.006 1.003 1.009 0.997 0.946 0.937 0.938
40 0.066 2.170 0.005 1.006 1.015 1.000 0.944 0.948 0.962
45 0.060 2.016 0.005 1.002 1.006 0.997 0.953 0.949 0.957
50 0.057 1.906 0.004 1.002 1.004 1.002 0.948 0.950 0.958

Table 9. Simulation study results for scenario β = 1.2, η = 30 and θ = 0.1

RMSE MRE CP

k β η θ β η θ β η θ

5 0.251 10.924 0.035 1.040 1.075 0.967 0.930 0.926 0.943
10 0.168 7.385 0.024 1.011 1.029 0.973 0.950 0.946 0.954
15 0.142 5.903 0.020 1.007 1.024 0.976 0.938 0.941 0.954
20 0.125 5.391 0.017 1.007 1.024 0.977 0.936 0.919 0.960
25 0.105 4.360 0.015 1.005 1.014 0.982 0.958 0.954 0.950
30 0.099 4.127 0.014 1.005 1.017 0.982 0.954 0.949 0.958
35 0.091 3.794 0.013 1.001 1.013 0.973 0.948 0.940 0.964
40 0.085 3.577 0.012 0.996 1.003 0.976 0.950 0.949 0.973
45 0.078 3.268 0.011 1.001 1.012 0.982 0.952 0.951 0.970
50 0.075 3.171 0.011 1.002 1.010 0.983 0.952 0.939 0.964
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Table 10. Simulation study results for scenario β = 1.2, η = 40 and θ = 0.2

RMSE MRE CP

k β η θ β η θ β η θ

5 0.391 16.962 0.114 1.081 1.130 0.833 0.911 0.908 0.945
10 0.263 11.313 0.095 1.023 1.075 0.794 0.915 0.929 0.975
15 0.210 8.918 0.080 1.011 1.062 0.802 0.936 0.941 0.979
20 0.185 7.822 0.073 1.004 1.038 0.810 0.940 0.931 0.983
25 0.162 7.070 0.069 0.991 1.043 0.791 0.948 0.940 0.987
30 0.145 6.255 0.068 0.977 1.036 0.771 0.963 0.944 0.994
35 0.140 5.703 0.067 0.979 1.032 0.772 0.955 0.941 0.993
40 0.125 5.269 0.059 0.983 1.027 0.797 0.960 0.947 0.995
45 0.129 5.194 0.061 0.983 1.033 0.787 0.943 0.934 0.996
50 0.118 4.980 0.058 0.984 1.030 0.788 0.943 0.933 0.993
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