Genetic dissimilarity between sugarcane genotypes at different harvest period for brown sugar production

Main Article Content

Patricia Jesus de Melo
Alessandro Dal'Col Lúcio
https://orcid.org/0000-0003-0761-4200
Elisangela Marques Jeronimo Torres
https://orcid.org/0000-0003-4253-2497
Maria Inês Diel
Tiago Olivoto
https://orcid.org/0000-0002-0241-9636
Marcos Guimarães de Andrade Landell
Darlei Michalski Lambrecht
https://orcid.org/0000-0002-1376-3504
André Luís Tischler
https://orcid.org/0000-0002-0112-9311
Francieli de Lima Tartaglia

Abstract

The purpose of this study was to characterize and identify the dissimilarity between sugarcane genotypes through technological and agronomic traits, in three harvest periods for brown sugar production. A randomized complete block design with four replications, using a split-plot treatment layout was used (IACSP 93-3046, RB 96-6928, IACSP 95-5094, IACSP 97-4039, SP 81-3250, IACSP 95-5000, RB 86-7515, IACSP 96-3060, IACSP 04-704, IACSP 04-656) and three harvest periods (15, 17 and 19 months of cultivation) with four replications. Technological traits related to quality parameters and agronomic traits related to the productive aspect were evaluated. According to the results, all genotypes showed a better response in the second harvest. The qualitative variables the apparent sucrose in sugarcane, total recoverable sugars and soluble solids in sugarcane showed differences between genotypes and seasons and are the ones that most contribute to the genetic divergence of brown sugar. For the production of dark colored sugar, the RB96-6928 genotype is recommended among all those evaluated, in the three growing seasons. As for the production of light-colored brown sugar, the cultivation of the genotypes IACSP 04-656 and IACSP95-5094 in season 1, the IACSP 97-4039 in season 2 and the IACSP95-5094 in season 3 is recommended.

Article Details

How to Cite
Jesus de Melo, P. ., Lúcio, A. D. ., Marques Jeronimo Torres, E. ., Inês Diel, M. ., Olivoto, T., Guimarães de Andrade Landell, M. ., Michalski Lambrecht, D., Luís Tischler, A. ., & de Lima Tartaglia, F. . (2024). Genetic dissimilarity between sugarcane genotypes at different harvest period for brown sugar production. Brazilian Journal of Biometrics, 42(1), 59–67. https://doi.org/10.28951/bjb.v42i1.651
Section
Articles

References

Ahmed, A. Z., El-Bakry, A. & Sakina, R. A. Assessment of the optimum age for harvesting some promising sugarcane varieties. Minia Journal of Agricultural Research and Development 36, 635-651, (2014).

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L de M. & Sparovek, G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22, 711-728 (2013). https://doi.org/10.1127/0941-2948/2013/0507

Asikin, Y., Hirose, N., Tamaki, H., Ito, S., Oku, H. & Wada, K. Effects of different drying e solidi fi cation processes on physical properties, volatile fraction, and antioxidant activity of non- centrifugal cane brown sugar. Food Science and Technology 66, 340-347 (2016). https://doi.org/10.1016/j.lwt.2015.10.039

Bates, D., Machler, M., Bolker B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67, 1–48 (2015). https://doi.org/10.18637/jss.v067.i01.

Castro, P. R. C., Miyasaki, J. M., Bemardi, M., Marengo, D. & Nogueira, M. C. S. Efeito do ethephon na maturação e produtividade da cana-de-açúcar. Brazilian Journal of Agriculture 76, 277-290, (2001).

Chandra, A., Verma, P. K., Islam, M. N., Grisham, M. P., Jain, R., Sharma, A. & Solomon, S. Expression analysis of genes associated with sucrose accumulation in sugarcane (Saccharum spp. hybrids) varieties differing in content and time of peak sucrose storage. Plant Biology 17, 608-617 (2014). https://doi.org/10.1111/plb.12276

Conab, C. N. de A. Acompanhamento da safra brasileira: cana-de-açúcar: segundo levantamento. (Conab, 2020).

Consecana. Instruction manual. (Piracicaba-SP: Consecana, 2006.

Cruz, C. D., Regazzi, A. J. & Carneiro, P. C. S. Modelos biometricos aplicados ao melhoramento genético. 4ª ed. (Viçosa, Editora UFV, 2012).

Embrapa. Manual CCP Fabricação de Açúcar Mascavo Melado e Rapadura. (EMBRAPA, 2014). Available at: http://www.iicabr.iica.org.br/wp-content/uploads/2015/11/Manual-CCP-Fabricação-de-Açúcar-Mascavo-Melado-e-Rapadura.pdf

Ftwi, M., Mekbib, F. & Abraha, E. Multivariate analysis of sugar yield contributing traits in Sugarcane (Saccharum officinarum L.), in Ethiopia. African Journal of Plant Science 10, 145-156, (2016). https://doi.org/10.5897/AJPS2016.1419

Gabriel, K.R. The biplot graphic display of matrices with application to principal component analysis. Biometrika 58, 453–467, (1971). https://doi.org/10.2307/2334381.

Guerra, M. J. & Mujica, M. V. Physical and chemical properties of granulated cane sugar “panelas”. Sociedade Brasileira de Ciência e Tecnologia de Alimentos 30, 250-257, (2010). https://doi.org/10.1590/S0101-20612010005000012

Hagos, H., Mengistu, L. & Mequanint, Y. Determining optimum harvest age of sugarcane varieties on the newly establishing sugar project in the tropical areas of tendaho, Ethiopia. Advances in Crop Science and Technology 2, 2-5, (2014). https://doi.org/10.4172/2329-8863.1000156.

Jeronimo, E. M., Pinotti, R, N., Arruda, M, C., Sodario Cruz, J, C., Henrique, C, M., Prat, P., Verdi, A, R., Pazinato, B, C., Beraldo, M, A, P. & Ishicava, S, M. Produção artesanal de derivados de cana-de-açúcar: Açúcar Mascavo – Melado – Rapadura. (Campinas, CDRS, 2020). Available at https://www.cdrs.sp.gov.br/portal/ themes/unify/arquivos/produtos-e-servicos/acervo-tecnico/cana-de-acucar-2020.pdf. (accessed 11 November 2020).

Kassambara, A. & F. Mundt. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7. (2020). https://cran.r-project.org/package=factoextra.

Kenward, M.G. & J.H. Roger. Small Sample Inference for Fixed Effects from Restricted Maximum Likelihood. Biometrics 53, 983–997, (1997). https://doi.org/10.2307/2533558.

Kuznetsova, A., Brockhoff, P.B. & Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software 82 1–26, (2017). https://doi.org/10.18637/jss.v082.i13.

Mojena, R. Hierarchical grouping methods and stopping rules: an evaluation. The Computer Journal 20, 359–363, 1977. https://doi.org/10.1093/comjnl/20.4.359

Nardino, M., Carvalho, I. R., Ferrari, M., Pelegrin, A. J., Szareski, V. J., Follmann, D. N. & Souza, V. Q. Indução de mutação e mensuração da variabilidade genética em genótipos de cana-de-açúcar. Revista de Ciências Agroveterinárias 16, 247-255, (2017). https://doi.org/10.5965/223811711632017247

Nayaka, M. A. H., Sathisha, U. V., Manohar, M. P., Chandrashekar, K. B. & Dharmesh, S. M. Cytoprotective and antioxidant activity studies of jaggery sugar. Food Chemistry 115, 113-118, (2019). https://doi.org/10.1016/j.foodchem.2008.11.067.

Okabe, T., Toda, T., Inafuku, M., Wada, K., Iwasaki, H. & Oku, H. (2009). Antiatherosclerotic Function of Kokuto, Okinawan Noncentrifugal Cane Sugar. Journal of Agricultura and Food Chemistry 57, 69-75, (2019). https://doi.org/10.1021/jf802796m

Olivoto, T. & Lúcio, A.D.C. Metan: An R package for multi-environment trial analysis. Methods in Ecology and Evolution 11, 783–789, (2020). DOI: 10.1111/2041-210X.13384.

R Core Team. A language and environment for statistical computing. Vienna, Austria. (2019). Retrieved from https://www.r-project.org/. (accessed 10 July 2019).

Rook, F., Hadingham, S. A., Li, Y. & Bevan, M. W. Sugar and ABA response pathways and the control of gene expression. Plant, Cell & Environment 29, 426-434, (2006). https://doi.org/10.1111/j.1365-3040.2005.01477.x

Santos, J. M., Quináia, S. P. & Felsner, M. L. Fast and direct analysis of Cr, Cd and Pb in brown sugar by GF AAS. Food Chemistry 260, 19-26, (2018). https://doi.org/10.1016/j.foodchem.2018.03.106

Sokal, R. R. & Rohlf, F. J. The comparison of dendrograms by objective methods. Taxon 11, 33–40, (1962). https://www.jstor.org/stable/1217208

Thirugnanasambandam, P. P., Mason, P. J., Hoang, N. V., Furtado, A., Botha, F. C. & Henry, R. J. Analysis of the diversity and tissue specificity of sucrose synthase genes in the long read transcriptome of sugarcane. BMC Plant Biology 19, 1-14, (2019). https://doi.org/10.1186/s12870-019-1733-y

Wang, J., Zhao, T., Yang, B. & Zhang, S. Sucrose metabolism and regulation in sugarcane. Journal of Plant Physiology e Pathology 5, 1-6, (2017). https://doi.org/10.4172/2329-955X.1000167