DESCRIPTION OF HEIGHT GROWTH OF HYBRID EUCALYPTUS CLONES IN SEMI-ARID REGION USING NON-LINEAR MODELS
Main Article Content
Abstract
Brazil stands out worldwide for planting homogeneous forests, mainly pine and eucalyptus. Forestry production is of great importance for the country’s economy, being also a reference in sustainability, competitiveness and innovation. Of the 10 million hectares of planted trees, 76.3% is composed of the genus Eucalyptus, which makes Brazil one of the largest producers of this genus in the world. The analysis of the growth trajectory of trees of this genus can be a great ally in improving the management plans currently used. In this sense, the aim of this study was to compare the performance of the nonlinear models Gompertz, von Bertalanffy, Brody, Chapman-Richards and Schöngart, which were fit using the R software considering the first order autoregressive error structure (AR1), applied to data of average height, in meters, in relation to time, in months, totaling 15 observations obtained during six and a half years. Nonlinearity measures were used to check the adequacy of the linear approximations of models and as criteria for model selection the R2, AICC and DPR, with the Schöngart (AR1) model being the one that best fit the data.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).